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Good morning. In the last class, we discussed about contour nozzles. The shape of the 

contour nozzle is in the form of a bell. Initially, you expand the flow by a large angle and 

you compress the flow later on, such that you get a very small value of divergence angle 

of let say 2 to 5 degrees at the nozzle divergent. Initially, you expand the flow at a larger 

angle say between 20 to 50 degrees and this shape of this contour is something like a 

parabola. You can fit with a second order parabolic equation for the shape or contour of 

the bell nozzle. 

(Refer Slide Time: 00:15) 

 

This is how a contour nozzle looks like. In today’s class, let us look at some 

unconventional nozzles and examine whether there are nozzles other than conical nozzle 

and contour nozzle. 
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Also, we would like to note that the changes from conventional conical and contour 

nozzles must be such that they must give better performance. We keep this in our mind. 

Well, a nozzle operates at its optimum when the value of pressure at its exit is equal to 

the value of the ambient pressure. In other words, if we want to make a nozzle, we 

design it for operation, let say at 15 kilometres. But the rocket operates between 0 km 

and 30 km. We start operating the rocket on ground i.e., from 0 kilometres and the rocket 

goes up to 30 kilometres. During the initial stages of its operation, viz., between 0 km 

and 15 km, it is not optimum as the exit nozzle pressure would be less than the ambient 

value. At 15km, it is optimum and beyond 15 km again the nozzle exit pressure is greater 

than the ambient. It is under expanded and not optimum. We start off with the nozzle in 

an over-expanded mode which after the design point operates in an under-expanded 

mode. Therefore, can we have say a nozzle in which we can have an extendable nozzle 

with varying area ratios in which the exit pressure is matched to the ambient pressure as 

the rocket moves up? 

Let me give you an example. Suppose, we have a nozzle and this nozzle is operating at 

lower altitudes or higher at values of ambient pressures. Now, we want to make it 

optimum and therefore we have to shorten it with a lower value of the exit pressure at the 

nozzle exit. May be we have to expand it out to larger values of area ratios when the 

rocket operates at higher altitudes. Therefore, we initially have a nozzle something like 

this. we extend the last part over here and then lock it. The area ratio has now increased 



and the nozzle has become longer. This initial lower area nozzle operates at low altitude 

while the larger area ratio nozzle operates at higher altitude.  
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When the rocket reaches higher altitude, we shift the second half of the nozzle divergent 

through some mechanism. We shift this over here and thus increase the area ratio of the 

nozzle. That means, this becomes our initial low area ratio nozzle and correspondingly 

we have a higher area ration nozzle. That means, we extend the nozzle to provide higher 

area ratios during the flight. At the lower altitude, we use the smaller area ratio. During 

this time we keep the larger area ratio segment on top of the lower area ratio portion. 

When the rocket reaches a particular altitude, we push it out. The nozzle length increases 

and the area ratio increases and this is what we call as an extendible nozzle. This was 

tried in a flight. It is not used in practice even though it has been tried. We call it as 

extendible nozzle. We could have several segments coalescing one on top of the other at 

lower altitudes and being pushed up as required by a mechanism in an extendible nozzle. 

If, instead of having an extendable nozzle, are there other alternatives? One such 

alternative is a double bell nozzle or something like a dual bell nozzle.  

In this we have a nozzle like this and I want to increase the area ratio still further. What 

we do is that we put something like a step at the exit of the lower area ratio and then we 

continue the nozzle profile like this. Now, the centre line of  the nozzle is the same. Both 

the portions are permanently in place. Now, what is going to happen? At lower altitudes, 



the flow expands to the ambient pressure and flow separates at the step and flows over. 

At higher altitude, because the pressure is very much higher than the ambient pressure, 

the flow reattaches at the junction or step and flows into the second part of the bell. 

Therefore, we can get area ratio ε1 and area ratio ε2 corresponding to the lower and 

higher altitude of operation respectively. This is known as a dual bell nozzle. In fact, this 

month’s issue of AIAA journal has a paper on this dual bell nozzle looking at the 

optimum conditions. That means, work is still pursued with the dual bell nozzles and it 

may have some promise.  
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Therefore, this is the second unconventional nozzle. First is the extendable nozzle and 

second is a dual bell nozzle. The third is something like a radial flow nozzle. By the 

radial flow nozzle; what do we mean? Something an expansion deflection nozzle. Let us 

sketch a throat followed by a divergent. Let us say, this the convergent and we have a 

divergent following the throat. This is the centre line. At the throat, put a block centrally 

making the flow in the throat to be annular; something like a plug in the throat. We allow 

the flow to take place in the annular space between the blockage and the throat and what 

happens? The flow is guided by the contour wall in the divergent part. At the centre, it is 

not guided. Therefore, we have something like an expansion wave. By this centre 

expansion, which is avalable, the nozzle is able to adapt to different altitudes.  



Therefore, by putting this centre blockage, I can make this particular nozzle operate at 

different altitudes. In other words, I have the outer wall, which guides the flow. Inner 

part is free. It can adapt different altitudes and therefore, this is known as an Expanded 

Deflection (ED) nozzle or expanded deflection nozzle. What we have to do is that we 

want the nozzle to operate at different altitudes.  
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Therefore, what we have done is, we have introduced a plug in the throat region and we 

allow the contour to change the pressure of the outer flow. But, the  inner region of the 

flow is keept free to expand. This is the principle of the expansion deflection nozzle.  

As an extension to this type of the plug nozzle, we could also have a different type of 

plug nozzles. Instead of having plug here and allowing the outer divergent contour to 

guide the flow in a nozzle, we could have a nozzle and I can have this plug in the form of 

a contour over here. Centre contour along the plug as shown. What is it that we do? We 

guide the flow over here, from the chamber. In other words, I have a annular chamber 

which leads to the annular throat over here and we allow the shaped plug to guide the 

flow. We allow the flow to come along the plug. We allow the inner contour instead of 

the outer contour from the divergent to balance the flow. Keep the outer open such that 

the flow is free to expand. This is again a case of an adapted nozzle.  

The shaped plug at the annular throat can adapt to any ambient pressure condition. I 

could have the contour of the plug in the form of a spike, in which case, we call it as a 



spike nozzle or simply we call it as a plug nozzle. I could still have some more 

variations.  

This particular plug which is at the centre: we could terminate it a little earlier instead of 

ending up at a point. We do not allow the total spike. In other words, we have a primary 

flow along this and I have the shock waves here and the secondary flow here. I have 

recirculation and a base pressure here and this becomes what we call as the aero-spike 

nozzle. What we are saying is that the combustion is happening over here; in an annular 

combustion chamber. We push the flow along the spike or contour and we allow the 

spike to expand the flow along the contour. The free expansion in the outer portion 

adapts the flow to the ambient pressure. 

Instead of having an outer boundary which regulates the pressure, we have an inner 

boundary which corresponds to a spike, which we call as a plug nozzle or a spike nozzle. 

Of course, this is a plug and the same plug which we used in the case of a contour 

nozzle; Here, the outer is free such that the nozzle can adapt to different ambient 

pressures of operation. This is therefore the case of an adapted nozzle. 

Aero-spike again: we would have additional thrust coming from the base of the plug if 

truncated as shown and which we call as a Aero-spike. But, why should we always think 

in terms of a cylinder or a bell or something like that. Why not open out the bell. Make it 

something like linear or planar. If we do not have a cylinder, but have an opened out 

cylinder we call it as a linear nozzle. What do we mean by a linear nozzle? Well, we 

open out the nozzle something like a two dimensaional sheet and we have the surface 

such as a ramp in the shape of a contour. Now, we  allow the flow over this contour 

surface, this ramp as it were, and we use the ramp to expand the flow to the ambient 

pressure. 

In other words, I have a two dimensional surface as shown. Let say, over here, it could 

be a shape of something like an aircraft wing. Flow comes along this, guides along the 

surface and comes out. The shaped surface is not confined and it could as well be a part 

of an aeroplane, like let say a wing or a fuselage. 
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We allow the gas to come along it and flow along the surface. It is known as linear 

nozzle. This has been used for space plane. These follow the same principle what we 

have discussed on nozzles so far. 
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We now summarize what we have learnt in nozzles through a series of slides. In the first 

slide, we look at the divergence losses, may be, alpha and how we got the divergence 

losses coefficient.  



This was the value of Δ, which we decided as percentage loss in thrust versus the angle 

α. 
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We derived this and we had said that the nozzle half angle is around 15 degrees or so for 

a conical nozzle. We talked in terms of a contour nozzle instead of having a conical 

nozzle wherein we initially expand the flow to αi before bringing it back to αe. 

(Refer Slide Time: 11:05) 

 



The value of αi is between 20 to 50 degrees and then, bring it back. We have a low angle 

over here at the exit of something like 2 to 5 degrees or so. Smaller the angle at the exit, 

smaller is the loss.  

This is the extendable segment.  
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Initially, we have a small area ratio corresponding to exit area  Ae1.We store another 

segment on top of this a segment between area ratio Ae2 and Ae1 and at higher altitude 

deploy or push itto get the larger area ratio nozzle.  

(Refer Slide Time: 11:42) 

 



This is a dual bell nozzle. As you see along the divergent contour we have a step at 

which for higher ambient pressure the flow separates but at lower ambient pressures 

follows the contour of the second part of the nozzle. As I told you, there was a research 

paper in the AIAA Journal this month in which dealt with the dual bell nozzle. 

(Refer Slide Time: 12:10) 

  

Those who are interested should go through it. This is a plug nozzle. I put a plug in the 

throat to make an annular throat. We have an outer surface, which guides the flow. The 

inner surface is free therefore, it can adapt to the ambient pressure. What you have is an 

annular throat, instead of having a cylindrical throat. 
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This is what we called as a plug nozzle or a spike nozzle. We have a spike following the 

annular throat. The flow comes from the annular combustion chamber. The hot gas is 

generated in an annular chamber instead of a cylindrical chamber. We push the flow onto 

this inner contour surface and this surface guides the flow. Outer surface is free; 

therefore, the expansion can adapt to the altitude. It is not used in practice. This 

summarizes what we learnt about nozzles. 
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A nozzle runs hot as the hot gases in it are at high temperatures. Therefore, to protect the 

nozzle, we provide insulation on the inner surface. This is the conical nozzle. I give 

something like a carbon phenolic composite material as an insulation, which can 

withstand a high temperature The composite materials such as carbon phenolic are 

known as ablative materials. I will come back to it, when we deal with cooling of 

rockets. I will get back to this slide a little later in the course. But, this is how the 

construction of a nozzle looks like. This is the outer surface and this is the inner wall of 

the nozzle. 

(Refer Slide Time: 13:09) 

 



 I repeat the case of a hot nozzle in this slide. A nozzle is firing for a certain amount of 

time. This is the conical nozzle. You see, that the nozzle runs red hot.  
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Well, with that we close the portion on nozzles. But, it will be useful to do a couple of 

problems on nozzles. One of the problems which we do is related to this particular rocket 

shown in this slide. This rocket is known as Saturn 5. Saturn 5 rocket was used to put 

first men on the moon. We call it as Saturn 5 launch vehicle, which puts the Apollo 

capsule carrying three men on the moon. This is, by far the biggest rocket ever made in 

the history of rockets. It is the most powerful rocket and what does it consist of? 

The first stage of the rocket, in the lower portion, consists of five rockets clustered 

together. Each one of these rockets is known as F1 rocket. It consists of five F 1 rockets 

clustered together. These rockets use liquid  kerosene and liquid oxygen as propellants. 

Kerosene as fuel and liquid oxygen as oxidizer. The second stage consists of five rockets 

again. It is known as J 2 rocket. we will get back into the details of this later on while 

studying liquid propellant rockets. 5 J 2 rockets clustered together for the second stage. 

They use liquid hydrogen and liquid oxygen. The third stage consists of one single J 2 

rocket. Therefore, what is it we are talking of? The Saturn 5 rocket consists of the first 

stage, which consists of five rockets and these are 5 F 1 rockets clustered together. The 

second stage similarly, consists of a cluster of 5 J 2 rockets. J 2 rocket uses liquid oxygen 

and liquid hydrogen as fuel. This first stage uses kerosene and liquid oxygen On the third 



stage, you have a single J 2 rocket and on top of this sit the particular capsule, which is 

the Apollo capsule, where the three astronauts who travel to the moon are housed. 
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We would like to do an sample problem. Let us take an example of F 1 rocket. However, 

before that, let us put some numbers. J 2 rocket in the third stage has a thrust of 

something about 1100 kilo Newton. Each of the J 2 rockets here, mind you, the same J 2 

rockets when used for the second stage, has a thrust of 1000 kilo Newton. Each of the F 

1 rockets has a thrust of something like 3800 kilo Newton. Let me make sure about the 

numbers. This has something like a thrust of something like 110 ton thrust. Because kilo 

Newton, therefore, we are talking of 10 Newton is equal to 1 kilogram. Therefore, we are 

talking of a huge force here. Therefore, why is it that the same engine when used in 

second stage produces less thrust than when used for the third stage? Altitude. That 

means, higher the altitude, I get more specific impulse and therefore we get more thrust.  

Let us work out a problem concerning the F 1 rocket. Out of all these five, let us do the 

nozzle problem related to one F 1 rocket. The thrust of this rocket is equal to 3800 kilo 

Newton; is that what was said? No my numbers are not correct. The thrust is very much 

higher. 6800 kilo Newton, I am sorry for the wrong numbers.  

Each F 1 rocket has a thrust of 6800 kilo Newton. The mass flow rate through the nozzle 

is equal to 2600 kilogram per second. These are typical numbers. We should keep in 

mind that we are not talking of 1 kilogram per second. We are talking of something like, 



almost 3 tons of propellant gases going through the nozzle per second. The area of the 

nozzle is equal to 0.65 meter square. That means, if we consider the diameters, a man 

can easily stand at the throat or walk through through the throat of this nozzle. 

The molecular mass of gases which are passing through the nozzle is equal to 22 grams 

per mole. The temperature of the combustion products in the chamber is equal to 3300 

Kelvin and the chamber pressure is equal to 6.65 Mega Pascals. That means, something 

like 66 bar. This is little below the standard pressure of 7 MPa, which we are talking of 

as a standard value of pressure for specific impulse. 

Mind you, this rocket was developed in the period of 1960s and we had the moon 

mission by 1969. Therefore, we are talking of an old rocket. But, mind you, it is still the 

most powerful rocket ever developed in the history of rockets and that is where I 

thought, maybe we should do a problem on this rocket. 
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Now, I want to find out for this F 1 rocket, the value of ηC*, the value of Isp and the 

value of thrust correction factor ζF. Let us do it. We should be able to do it since the area 

is available and you know how much propellans are burnt per second. 

To be able to get the value of ηC*, I must get the value of C*, which is actual and I must 

also get the value of C star, which is calculated under ideal conditions. The ratio of these 

two (measured/calculated ideal value) is the c star efficiency ηC*. How do I get the ideal 



value? Well, we already know it is equal to √RTc/ Γ. The value of capital gamma Γcan 

be determined. We get the value of the specific gas constant R as equal to the universal 

gas constant divided by the molecular mass of the gas and multiply this with the value of 

Tc to find RTc. Now capital gamma Γ is equal to √γ × (2/γ+1)(γ+1)/2(γ−1). The value of 

gamma for the gases is equal to 1.22. Therefore, we substitute the value of gamma is 

equal to 1.22 and the value of capital gamma works out to be equal to 0.652; √1.22 × 

2/(1.22 + 1)2.22/(2×0.2).  

To get C* ideal. For C* let us substitute the value, R0 the universal gas constant 8.314 

joule per mole Kelvin, and molecular mass as 22 g/mole..Please write the units whenever 

we do a problem. The value of Tc for this particular propellant combination is given as 

3300 K. The value of the molecular mass is equal to 22 grams per mole but, I am talking 

in terms of joule which is related to kilogram. Therefore, we take 0.022 kilogram per 

mole. 
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This is important. Many of us, mainly I find students just putting 22 here, which is not 

right because, when I say mole, I want the value of the soecific gas constant R in joule 

per kilogram Kelvin. Therefore, it must be kilogram per mole. The value of capital 

gamma, we already said is equal to 0.652 and this must be the numerator for this one. 

The value of C* ideal becomes 1713 m/s. 



This is how we calculate the ideal C*. That indicates  the capacity of the propellants in 

the chamber to generate hot gases at high pressure in the chamber. Let us repeat this. The 

capacity of kerosene and liquid oxygen to generate chamber pressure is given by C* 

ideal and this capacity is 1713 meters per second. Now, we want to get the measured 

value of C*. We have to calculate the actual expermiental value. How would I do it? I go 

back to look at the problem. The mass flow rate is given to us. The mass flow rate is 

given as 2600 kg/s equal to 1/C* × pressure × throat area. Pressure is given as 6.65×106 

Pascal. The throat area At is given as 0.65 square meters. Therefore, the value of actual 

C* can be calculate from these values. This is 2600 kilogram per second. C* will come 

out to be equal to 6.65 × 106 × 0.65/ 2600. This is equal to 1663 meters per second. The 

value of ηC* is therefore 1663 ÷ 1713 = 0.97. 

In fact, you find that the c star efficiency is quite high even for a rocket made in the  

1960s. The present rockets like the space shuttle main engine, has a C* efficiency of the 

order of 0.99. This is the way they are and are very efficient. There is hardly any room 

for improving the combustion any further. We have to understand that, when we do 

liquid propellant rockets, we will try to understand how come we get such values and 

what are the factors which govern it. 
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May be, we should use some of these tactics in the other propulsive devices also. 

Therefore, we have done one part of it, namely, what is the c star efficiency of this 



particular F 1 engine. The next one, I would like to find out what is the value of Isp. How 

do I do it? What is the specific impulse of this engine? Yes, I know the thrust is 6800 

kilo Newton and I know the mass flow rate is 2600 kg per second. Well, it is simple; is it 

not? Specific impulse is equal to Impulse I over mass of propellant Mp which is equal to 

I over t divided by Mp dot. The specific impulse Isp is therefore equal to force or thrust 

divided by mass flow rat eof propellants. This is already avalable. Th evalu eo fspecific 

impulse is therefore 6800 into 1000 Newton divided by 2600. The value of specific 

impulse comes out to be equal to what 2710 Newton secod per kilogram. This is the 

value of Isp. 
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Now, we want to get the value of the thrust correction coefficient ζF. For this, we need to 

do little more calculation. Let me erase this part of the board. We get ζF is equal to the 

ratio of actual thrust and ideal thrust. How do I get the ideal thrust? 

This particular rocket develops a thrust of 6600 kilo Newton, when the exit pressure is 

also sea level or rather, when the value of pe of this rocket is equal to pa which is equal 

to 0.1 MPa because, it is tested under sea level conditions. The test has been done at sea 

level, for which the exit pressure is equal to pa. We are assuming here that the nozzle 

exit pressure is equal to the ambient pressure.  

Therefore, for this condition, the value of F ideal is equal to m° × VJ because, there is no 

pressure thrust coming;  pe minus pa is 0 because pe is equal to pa and how do we get 



the value of  VJ? We have derived the expression VJ
2 = square is equal to 2 of the 

enthalpy difference which came out to be equal to √2γR0Tc/(γ−1)M{1−(pe/pc)(γ−1/γ)}. 

Here pe is equal to the ambient sea level pressure. Put in the numbers, R0 is 8.314 joule 

per mole kelvin, Molecular mass is  equal to 0.022 kg/mole and temperature is given 

3300 and gamma is given 1.22. 
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The value of pe is equal to 0.1 MPa, pc is equal to the value what is given here that is 

6.65 MPa. You substitute it and you get the VJ is equal to 2710 meter per second. 

Therefore, what is the value of ideal thrust? Thrust is equal to m° × 2600 kilogram per 

second multiplied by this value of VJ. Therefore, the value of F ideal is equal to VJ 

multiply it m° which gives you the 2600 into 2710, which is equal to 7046×103  Newton.  

What is the actual value of thrust? 6800 kilo Newton. But, how do I get the value of zeta 

F? Therefore, our immediate reaction or anybody’s immediate reaction would be to take 

the value of ζF, i.e., the thrust correction factor is equal to F actual divided by F ideal. F 

actual is equal to 6800 kilo Newtons. 

The ideal value is some what larger, that is 7406 kilo Newton and therefore, you will tell 

me, that this value is equal to 0.965. This is what one expects. But actually, you know, 

we have is an actual rocket, in which we must also consider the effect of C* efficiency. 

ζF is actually the thrust correction factor. In other words, Isp at the actual thrust goes as 

ηC* × the thrust correction factor ζF into the value of Isp.  



Therefore, if I were to correct for theefficiency of C*, I should have ζF = 0.965/ ηC*, 

which we got as 0.97. Rather, this works out to be 0.995, because this is only for the 

nozzle. We looked at that total problem and the total problem gave us this value and we 

have to isolate the correction to apply for the nozzle. Therefore, the correction factor for 

the nozzle is 0.995. Whereas, the contribution from the combustion or from the value of 

pressurization or c star is 0.97. 
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I think this is how we get the efficiencies. Well, I would be happy even if we put a 

number 0.965. But, let us keep in mind that 0.965 also includes the value of ηC*. That is 

why, I had to remove it and that is where I got this particular number 0.995.  

Let us take one more problem that is problem of rocket being propelled at different 

altitudes. Let me pose this problem to you first. Yes, let us say a booster rocket operates 

between sea level (0 kilometres) to 30 kilometres altitude and the chamber pressure of 

this rocket pc is given to be 7 MPa. 
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The specific heat ratio of the combustion products is given as 1.2 and the throat area At 

is equal to 0.1 meter square. Since, this rocket performs between 0 to 30 kilometre 

altitude, the designers felt that the nozzle could be designed for mean altitude of 

operation, say 15 kilometre altitude. Now, I want to determine the following: First, the 

nozzle expansion ratio, ε, and the value of the exit area Ae. Second, the value of the 

thrust coefficient CF at 30 kilometre altitude and what is the optimum value of CF at 30 

kilometre altitude and third, we also want to know, till what height or till what altitude 

will flow separation occur. In other words, we assume that we have a conical nozzle 

which operates between 0 and 30 kilometres. The nozzle is designed for an altitude of 15 

kilometres. We want to know till what height flow separation takes place in this conical 

nozzle. We also want to find out the area ratio, the area at the exit and the thrust 

coefficient at 30 kilometre, optimum value of thrust coefficient at 30 kilometres and to 

what altitude will flow separation persist. Let us do this problem.  

We need the data and the data on ambient pressure which are normally avalable as ICAO 

tables. In these Tables, the height in altitude versus the ambient pressure is given. ICAO 

stands for international civil aviation organisation. This gives some standards and they 

will list the altitude versus the pressure, ambient pressure in Newton per meter square, 

temperature , density. If at sea level, the pressure in Newton per meter square is 101325 

Newton per meter square. If the altitude is 4 meters height, the value is 61660 Newton 

per meter square. If the altitude is 8 kilometres, the value is 36651. You see, the value 



keeps decreasing. Let us put two or three more values of ambient pressure at the different 

altitudes as shown in the following slide:  
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12 kilometres, the value is 19399 and if the altitude is 16 kilometres, it is 10353 N/m2. If 

it is 20 kilometres, it is 10353 N/m2. If the alttude is 20 km, the ambient pressure is 5529 

N/m2 and if it is 30 kilometres, the value of pressure is equal to 1186 N/m2. Since, I do 

not give the value of ambient pressure at 15 km height, let us assume that the nozzle is 

designed for 16 kilometre altitude instead of 15 km. So that, the ambient pressure table is 

available to us. 

 We would like to first calculate the area ratio of the nozzle and the exit area. What do 

we tell? We say, well, the nozzle is designed for 16 kilometre altitude and therefore, for 

16 kilometre altitude, we have pe is equal to pa. Therefore, what should be the value of 

pe? For the nozzle? 10353 N/m2 or Pa, because the nozzle is designed for this particular 

altitude.  
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That means, we have pe as 10353 Pa. Other data viz., the value of pc is equal to 7 MPa. 

We say 7 ×106 Newton per meter square. The value of γ is given as 1.2. Therefore, we 

immediately write out the expression for the expansion ratio ε. Let us go back to your 

notes.  

Epsilon is equal to [2/(γ−1)]1/(γ−1) ×(pc/pe)1/γ ÷√[(γ+1)/(γ−1)]{1−(pe/pc)(γ−1)/γ}. You can 

easily derive it out. It is not difficult. I do not want us to memorize anything. You 

substitute the values and you get the value as equal to 52.5. Area ratio of the nozzle is 

therefore 52.5. The value of the exit area Ae/At is equal to 52.5.  Rather since At is given 

to you as 0.1 meter square, the value of Ae is 5.25 meter square. Is it alright? It is simple. 

You know, the calculations for rockets tend to be extremely simple.  

In fact, rockets are very simple. In India, we still have not made good diesel engine or 

internal combustion engine or gas turbine engine. We have been taking time to do it and 

we have still to do it on our own. Whereas, rockets being easier to do, we see spectacular 

progress in making of rockets.  

Therefore, you have Ae is equal to 5.25 meter square.  

Let us go to the next part of the problem. CF at 30 kilometres. How do we evaluate it? 

What will be involved in this? We had derived the expression for thrust coefficient CF. 

Let us go back and take a look at it. CF
0 = √2γ2/(γ−1)[2/(γ+1)(γ+1)/(γ−1){1−(pe/pc)(γ−1)/γ . 
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You will recall, we did this earlier. pa by pc and ε. Please check as to what are the 

values. I am interested at thrust coefficient at 30 kilometres. What are the values that we 

substitute? Well, γ = 1.2. What is the value of pe and what is the value of pc and what is 

the value of pa? Epsilon ε? We have already determined it as equal to 52.5. What is the 

value of pe? Which value  to take? Yes, the nozzle has been designed for 16 kilometre 

altitude and that is what the exit pressure should be. Because, it is now opearting at a 

higher altitude but, the nozzle exit pressure will not change. Therefore, pe is equal to 

10353 Pa. Your answer is correct. pc, we know is 7 into 10 to the power 6 Newton per 

meter square or Pa. pa at the current altitude of 30 kilometres, 11806 Pa. We substitute 

these values in the expression for CF and we get the value of CF as equal to, I use the 

other side of the board, 1.828 for CF
0 plus 0.0687 for the pressure contribution 

{(pe/pc)−(pa/pc)} × ε, the total being  equal to 1.896. 
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Please check these numbers. Now, what is the optimum value at 30 kilometres? Let us go 

back to the value of pe at optimum. From this expression itself you can tell me that 

gamma is still the same and what will be the optimum value at 30 kilometre altitude.  
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Well, pe must equal to pa. Therefore, for optimum, this term will get knocked out and 

what will be the value of pe, if it is optimum. Take a look at this table. Optimum at 30 

kilometres, that means, I will have a nozzle which gives me this value, 1186 Pa. 

Therefore, I now change the value of pe as equal to 1186 and the pressure term is no 



longer there. The value of CF which now represented as becomes CF
0, will now become 

something like 2.246. You see, the thrust coefficient is typically around 2 to 3.  

What is the percentage reduction from optimum? You had a nozzle. I think I will erase 

this out now. You had a nozzle which was designed for 16 kilometres. You are operating 

it at 30 kilometres. If it was designed for 30 kilometres, it would have been optimum at 

30 kilometres. We would have the optimum CF
0 as 2.246. But, the nozzle is designed for 

a lower value of area ratio and correspondingly a lower altitude, we get the lower value 

of the pressure thrust as 0.0687 and we do not get the net momentum thrust possible. We 

get the value of CF as equal to 1.896. 
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Therefore, we can now determine the percentage reduction from optimum is equal to 

2.246 minus 1.896 divided by 2.246. In other words, I have something like 0.156 or 

something like 15.6 percent reduction from the optimum. Therefore, you see the 

importance. You know that we are not able to get the nozzle to expand to the ambient 

pressure at the given altitude and in fact we are having an under expanded nozzle. That is 

why, I am losing 15.6 percent thrust. Had the nozzle been designed for 30 kilometre 

altitude, we would have got a higher thrust. But then, we would have got a problem of 

over expansion and flow separation at the lower altitudes.  



We now go to the next part of the problem and determine the altitude till which the 

nozzle is over expanded or the altitude till which the flow separation takes place. In other 

words, we want to determine the altitude till which the nozzle is over expanded.  

For this, we apply Summerfield criterion, which states that, when the exit pressure of the 

nozzle is less than or equal to 0.4 times the ambient pressure, then the flow is over 

expanded. We have looked at a other criterion namely, involving Mach number also. 

(Refer Slide Time: 47:48) 

 

Let us use the Summerfield criterion. When the ambient pressure pa is greater than or 

equal to pe divided by 0.4, then we can say that flow separates in the conical divergent. 

Therefore, let us determine the altitude below which flow sepration is possible. Let us 

examine the changes in the ambient pressure with respect to altitude. Let me address the 

Table again to determine this specific altitude of interest. Let us make a table of altitude 

in kilometre and the ambient pressure pa in Pascal. Let us plot it for something like two 

or three altitudes for which we are interested.  

At the altitude of 8 kilometres, the ambient pressure is 36651 Pascal. At the altitude of 

12 kilometres, the value of the ambient pressure is now 19399 Pa. It has reduced, 

because the altitude has gone up. At 16 kilometres, for which this particular nozzle is 

designed, the ambient pressure is 10353 Pascal. The question is, the nozzle is designed 

for 16 kilometres and therefore, the exit pressure of the nozzle is 10353 Pascal, we want 

to find out the altitude at which the flow begins to separate or the nozzle gets to be over 



expanded. Therefore, we have to state here that flow separation, we have just written, pa 

must be greater than or equal to pe divided by 0.4 and pe for the nozzle is defined or 

defined  as the ambient pressure at 16 km altitude viz., a pressure of 10353 Pascal. 

Therefore, pa must be greater than or equal to 10353 divided by 0.4 and this is equal to 

0.259 into 10 to the power of 5 Pascal. Now, the question is what is the altitude when the 

ambient pressure is equal to or just greater than this value?. 

Now, when pa is equal to 25900 Pa, it is somewhere between 8 and 12 kilometres. 

Therefore, we say at 8 kilometres, the ambient pressure is 36651 minus the value at 16 

kilometres is 10353. But, we are interested in the altitude at 0.259 into the 10 to the 

power 5. Therefore, we have the value of  25900 minus the value at 16 kilometres which 

is 10353 Pa and the change in kilometre is from 16 to 8 corresponding it to a value of 

something like 8 kilometres. Therefore, we have 8 kilometres plus their change is 25 to 

10353 and therefore, the value is 8 plus this so much kilometres. 
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This works out to be something like 8 plus 2.16 which is equal to 10.16 kilometres. 

Therefore, this is the altitude at which flow separation ceases or thereafter the nozzle is 

either runs full or is under expanded. This is all about nozzles.  

In the next class, we will start with chemical propellants. We will again keep it very very 

simple in the sense, we will look at what are the requirements of chemical propellants 

and then see, what are the propellants that, we must use. 


