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Good morning. In today’s class, we continue with nozzles. First, I will review what we 

have done so far and then, we will see whether there are any gaps, anything which has 

happened in nozzle development, which we have not covered. We said that nozzle is 

something like a vent, and we first learnt how to calculate the jet velocity. How did we 

calculate? We said that we have a chamber, which is at a pressure pc. Suppose, at the 

exit I have pressure pe; I can calculate the jet velocity VJ. We wanted VJ to be as high as 

possible and to be able to get a high value we need this vent or opening to be in the form 

of a convergent divergent shape and we also put a condition that the minimum area 

which we called as a throat, we should have a Mach number equal to 1. 
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We called this nozzle as a de Laval nozzle or a convergent divergent nozzle. In the 

convergent part, the Mach number was less than 1; in the divergent the Mach number 

was greater than 1. After having done this, we said at the exit I have exit pressure which 



is pe; the ambient pressure is pa and if the exit pressure does not match to the ambient 

pressure i.e., is not equal to the ambient pressure, we could have some shortcomings in 

the nozzle performance either due to under expansion or due to over expansion.  

After this, we took a look at what is the flow through the nozzle, we got the equation for 

m° = pc ×At/C* as the mass flow rate. We got an expression say m°/At which is mass 

flux as equal to chamber pressure pc × 1 over C*. C* had units of meter per second and 

we were able to correlate it with the pressure built in the chamber.  

The pressure built in the chamber is related to the mass generated or rather to the mass 

flow rate through the nozzle. We saw C* as a transfer function to develop pressure in a 

rocket chamber. Let us take one example just to clarify things. Suppose, I have a rocket 

in which the mass of propellant is let us say Mp kg. 
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Let the rocket fire steadily for a period of t seconds. The mass flow rate through the 

nozzle is therefore equal to Mp/t kg/s since Mp is in kilograms and the flow rate is in 

kilogram per second. If the pressure built in the rocket chamber is pc and if the nozzle 

throat area is At, we can directly write that Mp/t = m° = (1/C*) × chamber pressure pc × 

At. We can therefore determine this value of C*. If we do an experiment and determine 

the value of C star based on the measured value of mass of propellant, time and pressure 

and then we compare the value of C* which I actually measure to the C* which we 

derived ideally, both would not be equal. We calculated C* is equal to √RTc/Γ; we 



would find that the ideal value may be a little more than the actual experimental value 

because, some flow losses are taking place. The measured value to the ideal theoretical 

value was called it as C star efficiency of a rocket or rocket chamber.  

We also said that the nozzle has a divergent portion and we can also write the thrust of a 

nozzle as equal to the chamber pressure × At × a coefficient called thrust coefficent. We 

derived the equation for this coefficient. We called this as CF
0 ideal when pe =pa. 

Further, we found that since the thrust also depends on the exit pressure and the ambient 

pressure, and I show exit pressure pe and the ambient pressure pa here, pe may not be 

equal to pa, but the thrust is a maximum in pe is equal to pa; we called this ideal thrust 

coefficient as CF
0 when the exit pressure was equal to pa.  
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In a similar manner, when we have a rocket, which is firing or operating, we measure the 

pressure using transducers. We measure what is the thrust that is generated by rocket and 

determine the measured value of CF. We also calculate the value of CF, which we did 

using the ideal theory. The ratio of the experimental to the theoretical value was called as 

the thrust correction factor ζF. This is a summary of what we did. We also did something 

which was important. We said that instead of specifying the exit pressure and the 

chamber pressure, we can also specify a rocket nozzle in terms of a nozzle exit area Ae 

divided by the throat area At which we said was ε. 
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 Are there any questions on what we have done so far? Mind you all that we have done is 

for an ideal case, an adiabatic nozzle. And one-dimensional flow you always said that 

flow is going straight like this to the right. The mass flow rate is contributing to the 

thrust and expansion. Are there any questions so far?  

Your question is why we need to couple the C* with CF to determine the value of 

specific impulse when the specific impulse can be readily evaluated based on nozzle 

flow.  

Let us first clarify that C* is something which tells how much chamber pressure is 

developed when we provide a certain mass flow rate through the nozzle. The nozzle is 

identified by the throat area. In other words, the transfer function between mass per unit 

flow rate through the nozzle or mass flux through the nozzle at the throat to the chamber 

pressure gives me the value of the C*. We could get the chamber pressure for a given 

mass flux at the throat and this is the transfer function. What does it tell us? When we 

looked at the expression for  C*, it was √RTc/Γ where Γ is a function of γ viz., √γ × 

[2(γ+1)]2(γ+1)/(γ−1). What does it really tell?  

 

 



It tells, supposing I have a mass flow rate through the nozzle - mass flux through the 

nozzle throat, 
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what is the value of chamber pressure that we get? To get a high value of VJ, I need a 

high value of chamber pressure. Therefore, this C* tells you the capacity of whatever 

propellant you have in the chamber to generate a high pressure. Therefore, C star is not a 

function of nozzle performance, but more like what how a chamber can build up high 

pressure. All what it tells you is let us take one or two small examples.  

Let us take an example of a rocket, which burns a liquid fuel. We will study about 

propellants in the next series of classes.  

Suppose, I have a tank containing let us say liquid kerosene. I have another tank 

containing oxygen. I introduce them or rather force or push them in a chamber and allow 

it to burn to generate a high value of chamber pressure pc. The value of C* for the 

kerosene and oxygen, introduced in the chamber, will tell the capacity of propellants 

kerosene and oxygen to generate a pressure pc in the chamber. 
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A higher value of chamber pressure pc will be obtained with a higher value of C star. But 

then it is for the chamber. However, we did specify the mass flow rate and the throat 

diameter. We did not look at the divergent part of the nozzle even though we did solve 

for the nozzle flow. We had written that the mass flow rate m° is equal to ρt × At × Vt. 

Therefore, we did not really look at the divergent part of the nozzle; we looked only up 

to the throat. Therefore, C* is representative of the chamber to be able to generate high 

pressure gases when some mass is flowing. If instead of having kerosene and oxygen 

suppose, I have say liquid hydrogen and liquid oxygen may be the C* could be higher. 

Therefore, we would prefer this propellant combination to kerosene oxygen. C* 

therefore becomes a capacity of the chamber for a given propellant to generate high 

pressure gases.  

Normally, the value of C star is around 2000 to 3500 m/s; with a lower performing 

rocket or propellant that is not that good, will give a lower value of C*. Propellants, 

which are extremely energetic, will give higher values of C*.  

Now, what is CF? We defined CF as equal to thrust divided by pc × At. In other words, if 

we had terminated the rocket at the nozzle throat itself we would perhaps have got a 

lower thrust than in a convergent divergent nozzle. Let us qualify this further. If I have a 

rocket nozzle and I terminate it at the throat, where the Mach number is equal to 1, what 



would be the thrust? We have chamber pressure pc and now for all practical purposes pc 

is acting on all this area. The pressure is also acting normally over the head end over here 

and over the convergent part of the nozzle. The force generated from the pressure gets 

cancelled as shown, except over the throat area. 

The thrust from the unbalanced pressure is over the throat area and is equal to pc × At. 

This gives the order of magnitude since we did not consider the variations in pressure 

along the length of the nozzle. But we have the divergent part like this because of which 

the thrust would have increased. The increase comes from the pressure acting on the 

walls of the divergent. 
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We can write F is equal to CF × pc × At. The value of pc × At was the thrust if the nozzle 

was truncated at the throat. Therefore, CF is something like thrust magnification due to 

the divergent part of the nozzle and therefore CF is a quality factor for nozzle. In fact the 

values of CF for most nozzles are between 1.2 to something like 3 or 4. We will work 

through some examples in the later part of this class. Therefore, we conclude that CF is a 

quality factor for a nozzle while C* is a quality factor on the capacity to generate the 

pressure in the combustion chamber of a rocket. The product of CF and C* is the net  

specific impulse Isp. What is Isp? It is the total thrust divided by the mass flow rate m°. 
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Let us put the expressions down again. Force or thrust = thrust coefficient CF × pc × At. 

Well, pc can be written as in terms of mass flow rate m° = (1/C*) × pc × At. Therefore 

pc can be written as equal to m° × C* ÷ At. Substituting this value of pressure in the 

expression for thrust F, we observe that At and At get cancelled and we have thrust or 

force divided by m° is equal to CF × C*. The value of mass of propellant is m° into time 

while force is impulse per unit time. Either way the specific impulse is impulse per unit 

mass of propellant or thrust per unit mass flow rate and works out to be the product of CF 

× C*.  

Therefore, the specific impulse of a rocket has two attributes or properties in it; 1. the 

capacity of chamber to generate high pressure and high temperature gases and 2. how 

you expand the gases to get high velocity. Therefore, let us keep this terminology very 

clear. I have nozzle factor and a chamber factor, which gives us the net Isp. I will dwell 

on this further after a couple of minutes. But does this answer your specific question, 

why C*? Why CF? And what is the relation? How I got the specific impulse to depend on 

C* and CF?  

Let us take one example: let me take the example of a particular nozzle which operates 

let us say in vacuum, and let me take another nozzle which operates on the ground, let us 

say at Chennai which is at sea level. I have a chamber, which generates high pressure 

and high temperature gases. The exit pressure is equal to say pe. At sea level the ambient 



pressure is equal to pa which is equal to 100 kPa or 0.1 MPa. Now, I want you to tell me 

what is the relation between let us say Isp when the rocket operates at sea level and in 

vacuum. I want Isp at sea level condition and at very high altitude conditions where the 

pressure is almost zero. 

We can the thrust developed as equal to m dot VJ plus I have pe minus pa into what? Ae. 

The thrust comes from the momentum thrust plus the exit pressure minus pa into the exit 

area where Ae is the exit area of the nozzle. Mind you we derived this, and we said we 

had control volume and therefore, we found a pressure thrust in addition to momentum 

thrust. 
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Now, we would likw to write the equation for thrust of the rocket using the same nozzle, 

when it operates in vacuum instead of operating on the ground at sea level conditions. 

Let us say the nozzle now operates in the vacuum, the same nozzle, the same area ratio 

this is the value of the exit pressure is the same and it is pe. The chamber pressure 

remains the same at pc. The thrust now becomes m dot into VJ plus the pressure thrust pe 

into Ae. 

Now, I want to find out what is the specific impulse at sea level. Specific impulse at sea 

level is therefore equal to VJ + [(pe – pa) /m°] Ae . 
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 Now, what would be the value of specific impulse for the same nozzle functions in 

vacuum; I call it as vacuum specific impulse. Vacuum is equal to what would be the 

value of pa; it is 0. Therefore, we have VJ + (pe/m°) × Ae. In other words, the same 

nozzle when it is fired in vacuum gives me a higher thrust because, minus pa is missing 

in the above expression. Can we relate these two?  

Let us say Isp at vacuum with the Isp at sea level.  I find therefore, the specific impulse 

of a given rocket operating in vacuum is greater than when it operates on the ground. In 

other words, the specific impulse corresponding to operation in vacuum is greater than 

when the same rocket operates at sea level conditions. Now, we want to derive a slightly 

modified relationship relating the two.  

Therefore, we write Isp at vacuum Isp,vac = VJ + pe / m° × Ae and  what is the value of 

m°? m° = 1/C* × pc × At. If in terms of the C star, the Isp becomes the following: I have 

the value of Ae; Ae by At is the nozzle area ratio ε. The vacuum specific impulse 

becomes VJ + C* × pe/pc × ε . This is the nozzle area ratio ε in this expression. In other 

words, compared to a nozzle which gave me VJ plus this value of (pe – pa)/pc×ε at sea 

level, we get a much higher value. If this particular nozzle at sea level was such that I 

have optimum expansion namely pe was equal to pa, the Isp at sea level would have 

been just VJ alone. 



All what I am telling is, if the nozzle was such that that the exit pressure was same as the 

ambient pressure for which we told ourselves the CF is a maximum, we would have got 

the value Isp = VJ. But the same nozzle when operating in vacuum, we get an additional 

contribution C*×pe/pc×ε. Therefore, now the question comes how do I specify the 

specific impulse? If we tell that the rocket is operating in vacuum, we get a higher value 

of specific impulse. If it is tested on ground, we get a different value. Therefore, we must 

be clear in our terminology and therefore, two types of specific impulses are given; one 

is Isp corresponding to sea level operation and the second is Isp corresponding to 

vacuum. Therefore, whenever the performance of a rocket is specified we must be 

careful to know whether sea level or vacuum operation is being specified. 
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Therefore, there are two ways of specifying the specific impulse whether vacuum 

specific impulse or sea level specific impulse; but then there is another problem. If we 

have a higher value of chamber pressure, we get a higher value of expansion ratio and I 

can get a higher value of the specific impulse. Therefore, we also need some terminology 

which says a standard chamber pressure and the standard chosen is we specify specific 

impulse for pc equal to 7 MPa or 70 bar pressure; that means, specific impulse is 

normally specified when the chamber pressure is equal to 70 bar. The choice of 70 bar 

comes as it is about 1000 psi in the FPS system of units. 
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When the ambient pressure is equal to 1 bar or 100 kPa pressure, we imply sea level 

conditions whereas, when we talk in terms of vacuum, we imply very rarified 

atmosphere. However, for each of these two conditions, we specify chamber pressure as 

7 MPa. A rocket can fire at different pressures, but if we are to compare something, we 

need some standards and the standard is a chamber pressure of 70 bar and an ambient 

pressure of 1 bar for sea level Isp and 0 bar for vacuum specific impulse. The vacuum 

specific impulse is higher than the sea level specific impulse, which is VJ when the exit 

pressure is equal to ambient pressure. Are there any other questions on what we have 

done? 

 See so far, we have been talking of only one - dimensional flow in the nozzle. We 

discussed the divergent part and sketched it as a diverging cone. 

 We have the convergent part, but I am really not bothered about convergent because, 

anyway at throat I had a Mach number of one and the flow lines stream out almost 

axially. We had a chamber of pc. Now, in the divergent part flow is diverging out, and if 

we look at the flow which is taking place, the gas which is flowing near to the wall will 

have a direction along the wall while for the gas along the center line the flow would be 

along the axis as per symmetry. Therefore, we may not be justified in assuming one - 

dimensional flow at the exit of the nozzle. It is really not correct and we have to make 

some corrections for may be the radial flow or for the divergence in the flow.  



There is a simple way of doing this. The thrust is not going to be in the axial direction 

according to the figure. A component of thrust is going in this direction normal to the 

center line; it gets balanced out and only the effective thrust is in the axial direction. 

How do I get that value?  

Well, there is an actual flow taking place along the nozzle; let us assume that the half 

divergent angle of the nozzle divergent is alpha (α). Now, the flow near the wall will be 

alpha. On an average, the mean flow direction could be alpha by 2 because here, it is 

alpha along the wall and zero along the center line of symmetry. On an average the mean 

flow we can assume makes an angle of alpha by 2. I can also define a small element and 

do the problem by integrating it out, but the above approximation is sufficient for me to 

give an answer. In other words, on an average the flow leaves at at an angle equal to α/2. 

Is it ok?  

We would like to determine the thrust. Let us assume that the nozzle is adapted; that 

means, ambient pressure is equal to pe here; F is equal to m dot into VJ over here. What 

is the mass which flows along the axis? It is equal to m° × cos (α/2), that is the actual 

mass flow rate along the axis because on an average some mass flows at alpha, some 

flows at 0 with the mean direction being α/2. 
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 The average mass flowing along the axis is m°cosα/2; VJ is again corresponding to this 

α/2 as the mean direction of the velocity giving the axial component of velocity as VJ cos 



α/2. Therefore, the thrust due to the divergence being at an angle α will therefore be F = 

m°cos α/2 × VJ cos α/2 i.e., m°VJ cos2α/2. Is it all right? All what we told was flow is not 

all along the axis. Flow along the wall is at an angle α; on an average the flow is at α/2 

and therefore, the mass component along the axis is equal to m°cosα/2. The axial 

velocity on an average is equal to VJ cosα/2. Therefore, the product of m°cosα/2 into VJ 

cos α/2 make this cos2α/2.  

We would like to simplify this expression.  We use the trigonometric expression Cos2θ =  

2 cos2θ – 1. This gives cos2θ = (cos2θ+1)/2. And therefore, we can write cos2α/2 = 

(1+cosα)/2. This trigonometric manipulation is done because we can express it in terms 

of the half divergence angle of the nozzle. Mind you the total divergence is 2α; we said 

that α is equal to half divergence angle of the divergent. 
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Therefore we get the thrust along the axis of a rocket F is equal to m°VJ (1 + cos α) / 2. 

The term (1+cosα)/ 2, shown within the circle, is the loss factor due to the divergence. It 

is denoted by the Greek symbol lambda λ; and we say λ corresponds to divergence loss 

or F = m° × VJ × λ. Well, λ is something we say loss due to divergence, but I am not 

really looking at a loss; see actually, we are just multiplying it by a factor and it is the 

diverging loss factor. Therefore, if we have to have a loss, the loss should be something 

different.  



We say λ denotes the availability of the axial thrust out of the total due flow vectoring. 

What is the non-available part? The thrust not available is equal to Δ =1 −λ. In other 

words, λ tells us the fraction of the available thrust, which we call as divergence loss 

factor. The loss of thrust expressed explicitly is equal to Δ =1 − λ. Therefore, we have 

defined two terms and what are the two terms for the actual divergence effects? We 

defined λ as the divergence loss factor or rather we have to multiply the value of m° VJ 

by λ to determine be the thrust in the convergent divergent nozzle. 
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What is not available? The thrust, if the entire flow was axial everything would have 

been m°VJ therefore, 1−λ is not available. Therefore, we define capital delta as 1 −λ for 

losses. Now, why are we doing all this? We would like to have a nozzle in which we do 

not have too much of loss due to the divergent. Therefore, let us put some numbers for 

the losses.  

If the half divergence angle alpha of a nozzle is 0 and the loss would be zero. This is not 

possible because, I have a parallel walls for the nozzle. Alpha could be 5 degrees; it 

could be 10; it could be 15; it could be 20; it could be 25 or let us say 30. In other words, 

we are looking at different nozzles for which let us say half divergence angle varies from 

0 degree in which case I have no divergence to other angles.  



When α = 0, cos 0 is 1; therefore, the value of 1 plus cos α/2 is 1; that means, the entire 

thrust is available and the loss coefficient is 0 or in terms of percentage loss it is 0 

percent. 

When I have the value of alpha equal to 5o, the value of lambda is 1 plus cos 5o / 2; Cos 

5o is around 0.99 and the value of λ comes out to be 0.9988, and if I have Δ = 1 minus 

lambda, it is equal to 0.12% ; that means, 0.0012. If the angle α is 10 degrees, λ is equal 

to 0.9924 and the loss Δ comes out to be 0.76 percent. Let us put few more values: for 15 

degrees, the value λ is 0.9830 and the loss is 1.7 percent. If α is 20 degrees λ is 0.9699; Δ 

= 1 − λ gives me value of around 3 percent. If it is 25 degrees, λ is 0.9537; I will qualify 

these numbers and the loss is 4.63 percent or 0.0463. Well, the last value of α of 30 

degrees for which lambda is 0.933 and the loss 1 −λ comes out to be 6.7 percent. If we 

were to put one more angle let us say 35 degrees, the value of λ is 0.9066 and the value 

of loss Δ is 9.04 percent. What is it that we are tabulating here? We are considering the 

divergent angle of the nozzles to vary from 5 degrees to 35 degrees and for each of the 

values, we get the divergence coefficient and also the loss in thrust in percentage. You 

find when I go from a semi divergent angle of 5o, I am losing just 0.12 percent thrust; for 

10o I am losing 0.76 percent thrust; when I come to 15, I have lost already 1.7 percent 

thrust; when I go to 20o the loss is quite high. We have lost 3 percent of the thrust; when 

α goes to 25o it becomes 4, 6 and so on.  

In other words, it does not appear meaningful to have any semi-divergence angle greater 

than 20 since the losses become substantial. In fact, we were to compare 10 and 15o 

nozzle divergents, the loss for the 15o nozzle is 1.75 times more. 
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If the half divergent value was 20o, the loss is quite heavy. Therefore, the general 

practice therefore is to adopt some value around 15 degrees such that the loss is 

somewhat small. What loss? The divergence loss, but that is not the only reason. Let us 

try to put one more reason on to it. Let us consider the divergent part that I show here. 
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 We have seen that if the divergence angle is very small say of 5 degrees or even 1 

degree, the loss factor is almost going to be negligibly small. Therefore, why not have 

such a small angle. There is another implication as shown in the figure.  We show the 



center line alone along the axis of the nozzle; we have the throat; the throat radius is rt; 

the exit value of radius is re and what is α? tanα is a value of this angle: (re − rt) ÷  the 

length of the divergent Ld. The divergent length Ld is equal to (re − rt)/tanα. Is it all 

right? All what we are saying is, if I have a small angle for alpha, a nozzle for the same 

exit diameter and throat diameter will be much longer. If the angle is 0o, the length will 

be infinity. Therefore, let us put the length here into this Table.  What do we find? Well, 

we just put the length of the divergent for a particular case of throat and exit diameter of 

the nozzle i.e., Ld divided by re at exit − radius rt at the throat. This for the zero degree 

nozzle 0 is infinity.  

If we have a semi divergent angle of 5o, the value becomes 11.43. If it 10o, it is 5.67. If it 

is 15o, it is 3.73. If it is 20o, it is 2.75; 25o it is 2.14; 30o it is 1.73 and if it is 35o the value 

is 1.43. What does this mean? The length of the nozzle is very large if the angle is very 

small and the nozzle length reduces as α increases., If we compare the ratio for a 15o  and 

20o degree nozzle, we have values of 3.73 with 2.75; the change is not as rapid as it is 

between 11.53 and 5.67 for smaller values of α. As the nozzle length becomes longer and 

longer, the mass of the nozzle becomes larger.  We had also found earlier that ΔV, the 

ideal velocity provided by a rocket, is equal to you Isp or VJ into natural logarithm of 

initial mass to final mass of the rocket. The mass of the rocket will go up as the length of 

the nozzle increases.  The mass of a nozzle and therefore of a rocket of small angle of 

nozzle divergence will be more. And as the inert mass of the rocket increases, the ideal 

velocity provided by the rocket will decrease. The general practice is therefore to choose 

a divergence angle around 15o for a conical divergent. Mind you it is just based on the 

premise that we do not lose any further. We do not lose too much of thrust because of 

enhanced angle, but at the same time, we do not enhance too much the mass of the 

nozzle. We have lost only 1.7 percent of thrust and and the nozzle weight does not go up 

drastically as it is if we go for smaller angles. Therefore, based on this divergence 

analysis, we can summarize that a conical nozzle will normally have a semi divergence 

angle of about 15o. We will not go for smaller angles because in that case, the nozzle 

becomes long and mass would go up; we will not go for larger values of angle because, 

if we go for larger angles, we will lose more of the thrust. Therefore, the optimum for a 

conical nozzle is generally kept at 15o semi divergent angle. 
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Does it make sense? Now, if this part is clear I just have a few more things to tell in a 

nozzle. The question is, why did we address this divergence problem in such a major 

way? We said that the divergent part of nozzle is so chosen for α such that do not loose 

thrust and therefore require we smaller value of alpha. What prevents us from having a 

nozzle in which we can bring it back to give a very small divergence angle α at the exit? 

We can initially expand it out with larger angles and reduce the angle at the exit. We 

have the throat here; I have a conical nozzle. If we could have a small value of  

divergence angle at the exit, we would not loose out by the divergence loss. 
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What is being said is that in the initial stages of the divergent portion, we provide a 

larger divergence angle and reduce it later on; that means, we have initially a higher rate 

of expansion followed by a smaller rate of expansion. The shape of the divergent then 

looks something like a bell: the shape of the nozzle looks like a bell here.  This is the 

center line. Initially, we have larger expansion angle. We decrease the divergence angle 

such that the flow goes out more axially.  

In other words, we have a contour for the shape of the nozzle and such nozzles are 

known as contour nozzles or simply as bell nozzles. I think we could discuss further for a 

couple of minutes on the contour nozzles. We initially expand out the gases using larger 

values of divergence angles.  Let us plot the pressure distribution along the length of the 

nozzle. We know how to do it. The pressure at the throat is equal to [2/(γ+1)]γ/(γ−1). Let 

us first consider a conical nozzle divergent with a divergence angle of 15 degrees. We 

are only following up with the one - dimensional analysis. We plot the value of pressure 

in the nozzle as a function of distance over here. This is from the chamber; this is at the 

throat “t” followed by the divergent portion. 

Now, the pressure keeps falling as we progress towards the nozzle exit. Let us say this is 

the chamber pressure value at the throat; we know how to calculate it. The pressure 

keeps falling further and this is the exit value of the pressure. This is for a conical nozzle. 

At the entrance to the divergent, wherein the pressure is still quite high, we have a more 

rapid expansion in the case of a contour nozzle. Since the pressure is high the flow 

cannot readily separate from the walls of the divergent. The divergent walls of the nozzle 

will continues to guide the flow. Afterwards, the angle is reduced and the flow is guided 

to be more axial.  
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In this case it is seen possible for us to even reduce the length of the nozzle further and 

therefore, these bell nozzles are specified in terms of let say 80 percent bell or they say 

70 percent bell. What is meant is the following. A bell nozzle whose divergent length is 

80 percent or 70 percent of the divergent length of a conical nozzle is all what is 

required. We can terminate the length here itself because we are able to get the exit 

pressure or equivalently the exit area ratio.  We can more effectively employ a bell 

nozzle than a conical nozzle. 
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 The exit divergence angle of a bell nozzle could be between 2 degrees to something like 

5 degrees, thus giving a very low divergence loss. Initially, we expand it rapidly; here we 

provide a large value may be 20 degrees to 50 degrees.  We can make the nozzle a little 

more stubby or shorter with than the length of the bell nozzle being a fraction of the 

conical nozzle. To repeat, 80 percent bell nozzle means, the length of the bell is 0.8 times 

that of an equivalent conical nozzle. What do we do in a bell nozzle? We immediately 

expand downstream of the throat where the pressure is higher and allow the divergence 

to be smaller in the region of the exit such that we have less divergence loss. In fact, one 

paper, which we could read on this subject is by G V R Rao. He worked on it at 

Rocketdyne a long time ago.  The paper is on exhaust nozzle contour for optimum thrust 

and is refereed to as Rao nozzle. 
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This was published in the journal ‘Jet Propulsion’ which preceded the AIAA journal. 

The volume number is 38 and the year of publication is 1958. The page number is 377 to 

381.  

In a bell nozzle we initially expand the gas rapidly; we have something like rapid 

expansion and then we have something slow expansion which does not lead to adverse 

pressure gradients near the walls. We can afford to have a shorter nozzles compared to a 

conical nozzles.  Most rockets make use of the bell nozzles. If we have a bell nozzle, 

none of the earlier criterion like flow separation are relevant because we have higher 



pressure gradient along the wall. Therefore, whenever we talk of Sumerfield criterion 

saying exit pressure is 0.4 times the ambient; it is more applicable for conical nozzle and 

not exactly for a bell nozzle. I think this is all about nozzles; conical nozzle and contour 

nozzle. I want to spend another few minutes on different types of nozzles.  

(Refer Slide Time: 50:13) 

 

The ambient pressure decreases as the rocket moves up to higher altitudes. We had said 

that for maximum thrust coefficient, the pressure at the nozzle exit should be the same as 

the ambient pressure. Is it possible to have a different type of nozzles which can adapt to 

the altitude of operation. Can we make a nozzle to adapt to different altitudes starting 

from 0 kilometers and keep going up to 10 kilometers or 100 kilometers height? We 

shall deal with this in the next class and work out one or two small problems.  


