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Good morning. We continue with what we were doing with nozzle area ratios. The 

plume from an under-expanded and over-expanded nozzle is shown here. When under 

expanded, the exit pressure was higher than the ambient pressure. So, the flow continues 

to expand; how does the flow expand when its exits a nozzle? You have series of rare 

fraction fans and when these rare fraction fans hits the boundary of the hot plume, they 

are reflected as compression waves which merge to form oblique shock waves. These 

oblique shock waves when they when they interact with boundary of the hot plume from 

the nozzle, re reflected back as rarefaction fans which again forms oblique shock waves 

and this process continues.  

Therefore, when I look at an under expanded jet i.e., jet formed from the under-expanded 

nozzle as it were, I start a high value of Pe compared to Pa. I get first a set of expansion 

fans, which are followed by a oblique shock waves. Behind the oblique shock waves, we 

have compression. We therefore get a higher temperature, and this higher temperature 



region shows as a luminous zone. Following this, we have rarefaction fan, again 

compression waves and oblique shock waves. Therefore another luminous zone is 

obtained here. 

 Similarly, if we have an over expanded nozzle, the value of pressure at the exit is than 

the ambient pressure. Therefore, I form something like a shock wave which matches the 

pressure and therefore, to be able to get the value Pe equal to Pa. I have something like 

an oblique shock wave. The oblique shock waves continue to interact and we have a 

system of interacting oblique shocks. However, along the center line, after the interacting 

oblique shocks, I need to have the velocity at the center which is still going axially 

straight and the compression process causes the pressure to exceed the ambient pressure. 

This is followed by an expansion following the high pressure region. Therefore, in this 

particular zone, I have something like a high pressure and a high temperature region. The 

high pressure and high temperature region promotes chemical reaction and emits light 

and shows up as a luminous zone.  

Therefore, what is happening in an under expanded nozzle? We have a set of initial rare 

fraction fans, followed by oblique shock wave. In the case of over expanded nozzle, I 

have oblique shock waves, which thereafter result in the expansion fan. Therefore, there 

is a distinct change in the distribution of the luminous zones. 

 If the absence of expansion i.e., in the zones of compression, we should get some 

brighter spots light these bright zones are due to the shock wave heating and these are 

known as shock diamonds. We get this both for the under expanded flow as well as the 

over expanded flow. The only difference is that there is a phase difference in the location 

of the shock diamond. If we have an over expanded flow, the shock diamond comes 

much earlier as shown because we do not initially get the expansion fan. We start with 

the oblique shock wave. If we have under expanded nozzle, the luminous zone is after 

the first set of rarefaction fans where the pressure is higher than the ambient pressure. 

Therefore, a trained eye can determine if a nozzle is under-expanded or over-expanded 

by looking at the plume.  
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See in this case, we have oblique shock wave at the nozzle exit and the plume is seen to 

collapse inward. The shock diamond is formed a little later as is seen here. But in this 

particular test water is used for cooling the plume so that subsequent shock diamonds 

were not visible.  

In the plume from the exhaust of the nozzle, we saw one shock diamond followed by 

many shock diamonds. With an inviscid flow, you could have infinite number of these 

diamonds. But with viscosity, there is some dissipation and that is where I showed this 

particular slide which shows the space plane SR 71 in  which case may be you do see a 

shock diamond followed by second one, third one, fourth one and keep on going.   

 Therefore, the shock diamonds are the reflection of under expansion and over expansion 

in a nozzle. It is very fascinating to see some of these pictures and try to conjuncture 

what is really happening. But in practice there is another problem. With oblique shocks, 

when they interact at high incidence, Mach stem shocks are formed. 

And we have instead of having a regular reflection like what we have discussed so far, 

we have Mach reflection and therefore another shock is formed. And this shock wave is 

known as a Mach shock wave. That means, we have an incident shock, we have a 

reflected shock and a Mach stem shock in between. I have the incident shock over here, 

reflective shock and the vertical Mach stem shock. Thus the shock diamond pattern is 

different with a Mach stem shock being formed. 



And that is, how you see the diamonds in particular pictures? The diamond pattern is 

actually something like this wedged shape pattern. Normally, I would have expected may 

be incident waves like this, what we said was the diamond pattern is something like the 

interacting shock pattern but most often we have a Mach stem shock. We do not observe 

this regular reflection pattern. 
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And when we get a diamond pattern it is of interest to see that whether it is due to under-

expansion or over-expansion in the nozzle. The optimum is when the exit pressure of the 

nozzle is equal to ambient pressure in which case it goes straight without the formation 

of the shock diamonds. 

Are there are some problems we have with a under expanded and over expanded 

nozzles? 
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Supposing, we have a rocket nozzle with say an area ratio of let us say ten or so, which 

gives an exit pressure equal to the ambient pressure on the ground. Thereafter, this 

particular nozzle operates at altitude where the ambient pressure is lower than on ground. 

i.e., Pa is lower at a higher altitude than the on the ground. The exit pressure of the 

nozzle remains the same at the altitude as on the ground. However, the ambient pressure 

has reduced. The nozzle becomes under expanded at the altitude. And therefore, we will 

not be able to get a high value of VJ which would have been possible, had we used a 

higher value of expansion ratio or equivalently a higher area ratio nozzle.  

Whereas, if on the other hand, we have a nozzle of area ratio of let us say forty which 

gives me an exit pressure which is much lower than the ambient pressure on the ground, 

the nozzle is over expanded. We will have flow separation which is again not desirable. I 

have shocks and I have as asymmetric flow separation and in essence I have side forces 

on the nozzle. 

Therefore, we find that in general, we cannot always have optimum expanded nozzles as 

we use fixed area ratio nozzles. We have to live with under expansion, and because of 

this we loose out on jet velocity. But at the same time I cannot have over expansion 

because I cannot deal with flow separation as it introduces side forces.  These are some 

problems in rocket nozzles. 
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And therefore, supposing I have say a booster stage of a rocket and we define booster 

stage as a ground stage which has to fly let us say between zero kilometer to something 

say like up to forty kilometers or so. Then I cannot have a nozzle, which will be perfect 

or optimum for all the entire range of altitude. In other words, at zero kilometers I have 

ambient pressure of hundred kilo Pascal whereas at forty to fifty kilometer, maybe the 

ambient pressure may be something like four or five kilopascals or might be even lower. 

Therefore, my ambient pressure is decreasing and therefore, it is not possible for me to 

make a nozzle for ground condition with a single value of epsilon (ε) compatible over the 

range of the altitudes. We will lose too much on the jet velocity VJ. 

Therefore, I make the nozzle optimum for an intermediate altitude; let us say between 

these two extremes - maybe the rocket has to operate from zero to forty kilometers. I 

design my nozzle for ten kilometer altitude in which case, the pressure may be somewhat 

different from hundred kilo Pascal and may be its something like nearer to let us say 30 

kilo Pascal; that means, the exit pressure of the nozzle for the particular area ratio is such 

that the exit pressure of the nozzle Pe has a value of 30 kilo Pascal. 
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Now, this particular nozzle when the rocket takes off, what will happen? Is it over 

expanded or under expanded?  Now let us show it the figure over here. The Y axis shows 

the altitude and we say this design for an altitude of ten kilometers. The rocket has to 

operate upto an altitude let us say of forty kilometers. This is where viz., at 10 km 

altitude I have the optimum nozzle therefore, initially the nozzle performs in an over 

expanded mode and thereafter, it performs in under expanded mode. 

We are not getting the high value of jet velocity which we could have got instead of 

choosing a value of area ratio ε which gives me the exit pressure corresponding to ten 

kilometer beyond 10 kilometers. Had I chosen a value of epsilon which was 

corresponding to forty or fifty kilometers, I would get a much higher value of VJ. But 

then we cannot also afford to have an over expand the nozzle for the lower altitude of 

operation and get into side thrust problems. It is always that a given nozzle operates 

either in an under expanded mode or an over expanded mode, but we try to decrease the 

extent of these modes. You have seen in the earlier figures where we have shown a 

booster stage has a small area ratio nozzle. Whereas, if the rocket is going to operate at 

higher altitude, we will design a nozzle with larger value of area ratio such that it is more 

in the area of near to optimum throughout its flight altitudes. The optimum shifts to 

higher altitude for the upper stages and this something which we need to keep in mind.  
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We had said that the nozzle, if over expanded, implies that Pe is less than the value of Pa. 

But in general, gases flow at high velocity in a nozzle divergent and therefore, we have 

the inertial force available as well.	And in practice, when we have the exit pressure less 

than something like 0.4 times the ambient pressure, then only we have this problem of 

flow separation and shock formation even though, ideally we said that Pe just less than 

Pa (the ambient pressure) causes flow separation. Experiments have shown because of 

the inertial forces the rocket nozzle can operate without flow separation at a much lower 

value of exit pressure Pe than the ambient pressure. The value for flow separation is Pe < 

0.4 × Pa. This condition was devised by Summerfield and it is known as Summerfield 

criterion. What is the implication of this? 
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Supposing I have to make a nozzle perform on the ground as well as at altitude. The 

choice of the area ratio is such that the exit pressure would be about 40 kPa instead of 

100 kPa. It is not necessary to have the nozzle designed for an area ratio ε for an exit 

pressure of hundred kilo Pascal. But it is okay for me to have a much larger area ratio 

such that the exit pressure is equal to much lower value of forty kilo Pascal. The inertial 

forces help in delaying the onset of separation. Having said this, it is also necessary to 

note that, this is a very accurate condition but only a sort of a thumb rule. In fact the local 

Mach number at the zone of flow separation affects the flow separation criterion. And 

the value is given by the value of Pe by Pa at the zone of separation is equal to Pe/Pa = 

(1.88M − 1)−0.64. In fact based on experiments, it is not only the inertial force which 

delays the flow separation as a constant value of 0.4 times the ambient pressure, but it 

depends on the local Mach number at which the flow separation takes place. This 

criterion based on Mach number at the zone of separation is again based on experiments. 

Therefore, I hope by now we get a feel for nozzles and the problems involved with it. We 

find that the nozzle area ratio ε depends on the ambient pressure. Ambient pressure keeps 

varying in the flight and therefore, we need variable area ratio nozzles. The moment we 

talk of fixed area ratio nozzles, it is also necessary for us to consider the problem of 

under expansion and over expansion. We lose performance by under expansion. We get 

side loads from over-expansion, which is harmful. Having seen these aspects, let us go to 



the next phase wherein, we also would like to know a little bit more about, what is the 

thrust? Or what is the thrust generated by the expansion in the nozzle?   
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So, far we have considered the jet velocity as a function of the chamber properties; we 

said a convergent divergent nozzle is required; we look at the area ratio Ae/At of the 

nozzle. We talked in terms of the under expanded, over expanded and optimum nozzles. 

We are clear about this, but now the question is, what is the thrust generated by nozzle? 

How is the thrust generated? Thrust from change of momentum or momentum thrust 

m°×VJ. But we have been telling that depending on the nozzle area ratio ε, the exit 

pressure Pe could be different from ambient pressure Pa. 

Thrust could come from pressure also, because I am not able to fully expand the gas. 

Therefore, I have some pressure thrust just as momentum thrust. Let us write an 

expression for the force developed by a rocket, which we have said so far is equal to rate 

of change of momentum. 
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Let us put the diagram in the form of a control volume. We again start from basics. Let 

us imagine, we have a rocket as shown here; let the pressure at the nozzle exit be at a 

pressure Pe. Now what I do is, I want to find out what is the force is generated? 

Therefore, we clamp the rocket on the ground and we attach it to a fixture over here. We 

hold it on firmly with a force F such that the rocket is stationary while it is clamped but 

in operation. Now, we want to find out this force F which rocket develops? The exit 

pressure is not balanced by the ambient pressure all along the rocket and we make a 

control volume about the rocket as shown by the straight dotted lines. 

Now we want to find out the force F. We find that everywhere on the on the walls of the 

control diagram, that is this imaginary dotted lines, where the pressure is the ambient 

pressure? Let us call these lines as AB , B C, CD and DA. The nozzle exit is EF along 

line BC. We find all along the lines the pressure is the same and the only place where we 

have a difference in pressure is in this region EF. That means, over this particular area 

corresponding to nozzle exit area EF, we have ambient pressure Pa is acting upstream of 

it and Pe acting downstream. Along all other lines, the pressure Pa is balanced acting in 

the opposite directions such as on AB and CD and similarly on left and right sides of the 

lines outside the boundary of the rocket.  

 



Now let us write the force equation for this control volume. The momentum thrust is 

balanced by the pressure forces and the restraining force F  the momentum component 

which is issuing out of the nozzle = F + force from the pressure unbalance; that is:  m°VJ 

= F + (Pa –Pe) ×exit area of the nozzle Ae. Rather the thrust F = m°VJ – (Pa − Pe)Ae. 

The momentum thrust is partially offset by the unbalanced value of pressure force at line 

EF giving a value of force (Pa – Pe) × exit area of the nozzle in the opposite direction. 

Therefore, the force or rather the net thrust is equal to m°×VJ + (Pe−Pa)Ae. We have now 

modified the thrust equation in which we originally considered only the momentum 

thrust and we now incorporate the pressure thrust in it. 
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To repeat; we had got an expression as F is equal to m°×VJ. Now we add the pressure 

term (Pe –Pa) × the value of the exit area. Well, if we want to get the thrust developed by 

the rocket; we need the expression for m°VJ. We have already derived the value of VJ. 

This was √2γRTc/(γ−1)[1-(pe/pc)(γ-1)/γ].  Therefore, if we can derive an expression for 

m°, we can find out the momentum thrust to which we can add the pressure thrust. Let us 

now calculate the value of m° that is required. 
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 m° = ρt Vt At and is better that we use the reference as At, because at the throat the flow 

Mach number is unity. Therefore, we substitute Vt = at viz., sound speed at the throat. 

Now can we write it in a form which is easy to determine. Let us do it. We have ρt/ρC = 

[2/(γ+1)]1/(γ−1) . We derived this expression for ρt/ρC in the last class from Pt/Pc and Tt 

/Tc .  

What is ρC? Pc/RTc from the ideal gas equation. The sound speed at =√γRTt and we need 

to consider the local condition here at the throat. At is known. 
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Therefore, what is the expression for the mass flow rate m°? It is equal to 

√(2/γ+1)1/(γ−1)×pc /(RTC ) ×At ×√γRTt. Tt can be written Tt/TC×TC and Tt/TC = 2/(γ+1). 

√RTc in the numerator with RTc in the denominator gives √ RTC in the denominator. We 

therefore get the value of m° = √γ × [2/(γ+1)]γ/(γ−1)×Pc×At×1/√RTc × √Tt/Tc . 

 We have taken √RTc outside and are therefore left with √Tt/Tc.   

Now instead of √Tt/Tc, we can write it as √2/(γ+1) and we now we get the final 

expression. It equals √γ × [2/(γ+1)](γ+1)/2(γ−1) × 1/√RTc ×Pc×At. The terms containing γ 

are function of γ alone. Let us therefore define √γ × [2/(γ+1)](γ+1)/2(γ−1) = Γ.  
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In which case the value of m° = Γ/√RTc ×Pc×At. This gives us the net flow rate m° and 

is the mass flow rate through the nozzle. 

 You find that for a given mass flow rate in kilograms per second, if we were to use this 

expression, the term capital gamma divided by under root √RTc  transfers the mass flow 

rate into pressure Pc. We have something like a transfer function. What do you mean by 

this transfer function? If I were to rearrange this equation, we get Pc as equal to m°÷At, 

that is mass flux through the throat, × (1/Γ)/ √RTc or rather √RTc/Γ. We can interpret 

this by the following: for a given mass flux through the nozzle this represents something 

like as a transfer function which will give me the chamber pressure; that means, √RTc/Γ  

is a function which converts the mass flux into pressure.  

 Let us examine the unit of √RTc. R has units of Joule per kilogram Kelvin, Tc is in K. 

the unit is therefore Joule which is Newton meter. Newton meter is equal to kilogram 

meter per second squared into meter and therefore the unit is meter per second. The unit 

is of velocity. Γ does not have any units. Therefore this transfer function given by 

√RTc/Γ by capital gamma has unit sof velocity and is called as characteristic velocity 

C*.  
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 Therefore we can now write, the value of m° = Pc × At ÷ C*, where C star (C*) is 

defined as a characteristic velocity which is equal to √RTc/Γ.  

We have just defined the transfer function term C* and because we find that the unit is 

velocity and we call it as characteristic velocity. And therefore, given a rocket; assume 

have a rocket chamber with the throat of area At m2, if we know that the mass flow 

through the nozzle is so many kilograms per second, we can go back using this transfer 

function, find out what is the value of chamber pressure by using the transfer function 

which we call as characteristic velocity C*. It is an extremely important parameter, to 

characterize the mass generation rate of a rocket. We will come back to this later on. 

Therefore, what is it that we ended up doing? We wanted to find out the value of m° and 

the value of m° was √γ ×[2/(γ+1)](γ+1)/2(γ−1) × 1/√RTc ×Pc ×At. This multiplied by VJ + 

(Pe –Pa) ×Ae is the force or thrust generated by the rocket. 
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Let us simplify this expression and get the value for the thrust generated by a rocket. We 

find that F =  √γ ×[2/(γ+1)](γ+1)/2(γ−1) × 1/√RTc ×Pc ×At ×VJ given by √2γRTc/(γ−1)[1-

(Pe/Pc)(γ-1)/γ] + (Pe –Pa) × Ae .   

 Therefore, now if we take PcAt outside and we simplify this whole expression again, 

can we remove some terms? We get RTc over here and this was equal to R into chamber 

temperature Tc. Therefore, RTc gets cancelled and therefore the  expression for the 

thrust is F = Pc×At×{√γ ×[2/(γ+1)](γ+1)/2(γ−1) ×√2γ/(γ−1)[1-(Pe/Pc)(γ-1)/γ] + (Pe/Pc –Pa/Pc) 

× ε }, where ε =Ae/At .  

Let us understand each term properly. This whole term within curly bracket ×{√γ 

×[2/(γ+1)](γ+1)/2(γ−1) ×√2γ/(γ−1)[1-(Pe/Pc)(γ-1)/γ] + (Pe/Pc –Pa/Pc) × ε }if denoted by a 

coefficient CF; we can say the force generated by a rocket or thrust generated is equal to 

CF into chamber pressure into At, where CF =×{√γ ×[2/(γ+1)](γ+1)/2(γ−1) ×√2γ/(γ−1)[1-

(Pe/Pc)(γ-1)/γ] + (Pe/Pc –Pa/Pc) × ε }.  
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Let us first find out the value if we have the value of Pe by Pc as an optimum i.e., when 

the expansion in the nozzle is to the ambient pressure or Pe = Pa. The value of CF when 

Pe is equal to Pa i.e., for an optimally expanded nozzle. There in this case this pressure 

term becomes zero. We denote CF under optimum expansion as CF0.  

This pressure term is out, but then you are increasing the value of Pa. The value of CF0 

corresponding to the value of Pe is equal to Pa will be a maximum and that is denoted by 

CF0 which corresponds to the optimum nozzle. This can be shown by differentiating with 

respect to Pe/Pa and equating to zero to find the maximum CF. We get CF0 = {√γ 

×[2/(γ+1)](γ+1)/2(γ−1) ×√2γ/(γ−1)[1-(Pe/Pc)(γ-1)/γ]}.  

If we have the exit pressure not being equal to the ambient pressure i.e., we have let us 

say an over expanded nozzle. We get a negative pressure thrust term. If we have an 

optimum expansion in which Pe is equal to Pa, this becomes zero. If we have an under 

expanded nozzle, we have more thrust compared to cases when Pe  is equal to Pa. Hence 

we get the maximum thrust F when Pe is same as Pa. 

This is because of the contribution of momentum thrust and the pressure thrust. The 

condition CF is equal to CF0 implies the maximum thrust when the nozzle is optimally 

expanded. This means that an adopted nozzle always gives maximum thrust. Otherwise 

because of under expansion, we lose thrust. We are not able to get sufficient momentum 

thrust and the pressure thrust is not adequate to give a thrust greater than the deficit.  



 

Let us take a look at some other results from this expression. You know, all we did was 

to derive this value of CF0, which we got for the optimum value.  
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That is CF0, the thrust coefficient also represented as CF
0 for the optimum thrust 

conditions. What is it we find? As we increase the value of Pe/Pc, that means in this slide 

it is the inverse of Pc/Pe, we have higher expansion ratios, higher values of Pc or lower 

values of Pe, we get a higher and higher value of CF
0. The values, which are realizable 

for values of γ = 1.4 are shown. It is seen that at the lower value of γ, we have a higher 

values of CF
0 especially at smaller values of Pc/Pe. The value of the thrust coefficient is 

sensitive to the value of gamma, in addition to being a function of Pc/Pe. 
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The same results are plotted on this particular slide, wherein the optimum thrust 

coefficient is shown as a function of γ. We find that at large values of Pe by Pc,  γ does 

not influence the thrust coefficient CF0 coefficient at all. If we have a small values Pe/Pc, 

variations in γ cause a considerable change in the thrust coefficient. That means, a 

decreased value of gamma will give us a higher value of CF
0

.. 
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Therefore, we have looked at the thrust coefficient for optimum thrust viz., when you 

have a case of Pe = Pa, for which the thrust F = CF
0 × Pc × At, we find that the value of 



CF is also, function of gamma in addition to being a function of Pe by Pc. A small value 

of Pe/Pc or a larger value of chamber pressure gives us a higher thrust coefficient. The 

value of gamma also influences the CF. If the value of Pc/Pe is not large, for instance we 

have a low chamber pressure, then gamma is not very influential. A small value of 

gamma will give a higher value of CF
0. This is all about thrust generated in a nozzle.  
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We told that m° viz., the mass flow through a nozzle is m° = (1/C*) × chamber pressure 

Pc ×throat area At, where C* is equal to √RTc/Γ, the unit being meter per second. And 

we said, force in the nozzle is equal to CF (whether under expanded, optimum or over 

expanded conditions) into Pc into At. Therefore, whenever we make a rocket, we 

evaluate the it for CF and C*. But C* does not come from the nozzle, since we are talking 

of the transfer function between mass flow rate and the chamber pressure. That means 

C* comes from the chamber. Whereas, the thrust coefficient CF tells me what a nozzle is 

doing; it takes the chamber pressure multiplied by a coefficient, it gives me the force. 

Can we put the performance of a nozzle together?  I think we need to go a little deeper 

into these two particular expressions. Therefore, let us write out these two expressions in 

a slightly different form and then infer. So far we assumed the flow in a nozzle is 

adiabatic and reversible i.e., isentropic flow and also one dimensional flow.   
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And for one-dimensional flow, we drive all the expression for VJ, we derive the 

expression for under expanded, over expanded, may be flow in the plume outside the 

nozzle and all that. And we find that we can write m° is equal to 1 over C* into Pc into 

At. We also derived the expression for the thrust and we find it is equal to the thrust 

coefficient CF into Pc into At. Now if we play with these two equations, I find over here 

Pc into At is common for both these equations. Therefore, can we somehow put this 

together? Can we substitute Pc into At from mass flow equation into the force equation? 

 If we were to do it, we get Pc ×At equal to m° into C* and substituting in the expression 

for thrust F, we have F = CF × m° ×C* .  

And what is F divided by m°? What is the thrust per unit mass flow rate? That is we are 

talking of F d t impulse divided by mass of the propellant m°dt, or impulse per unit mass 

is a specific impulse Isp. We therefore have Isp = CF × C*. This is an expression for 

specific impulse. 
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The expression for Isp was VJ. What was VJ? VJ was, when the exit pressure was 

matching the ambient pressure that is when we derived the expression for the jet 

velocity. Now you have the contribution coming from the exit pressure also.  

Therefore, what is it the net inference? The specific impulse Isp depends on the 

performance of the chamber, and what does a chamber do? Chamber is generating or 

producing high pressure gases. It gives C*.  And what does a nozzle do? It expands the 

gases and provides a value of CF? CF is representative of the nozzle converting this high 

pressure into high velocity. Something like the nozzle effectiveness or the nozzles role 

and therefore CF is the figure merit of the nozzle. It is an index of how effectively, it 

converts the high pressure gas into velocity 

 And C* is a figure of merit of the chamber, in that it tells us how high pressure is made 

available in nozzle? Therefore, you have a composite index of C* and CF. Therefore the 

specific impulse or Isp is a product of pressure generating capacity in the rocket and the 

effectiveness in the gases being expanded. 

 And how is pressure generated?  It is through C*. Whereas, once the pressure is 

generated, the nozzle helps in generating the high jet velocity. Therefore, you have both 

the chamber and the nozzle contributing to the jet velocity or specific impulse. There is a 

propellant to generate hot gas and CF which means the effectiveness of the nozzle. 

Therefore, Isp =CF ×C*. 



But so far, we considered only ideal one dimensional isentropic flow and it is necessary 

for me to go back and apply corrections since everything cannot be ideal. Therefore, 

there has to be some something like an efficiency. 
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Therefore, can we talk in terms of efficiencies of mass generation and efficiencies for 

thrust production? The mass generation, we decided in terms of C*; therefore, if we have 

to have an efficiency for mass generation, it is equal to C star which is experimentally 

observed divided by the ideal value which we derived in this class to be ideal value and 

equal to √RTc/ Γ.  

Therefore, all what we do is an experiment; we have a rocket and find out the rate mass 

at which the mass is delivered out. Find out the ideal using the calculation, and you say 

this is eta C* (ηC*). We will find that the values are quite high of the order of 98 to  99 

percent. We will do some problems on this later on.  

How do you get the thrust efficiency? We call it as thrust correction factor ζ. And you 

denote it by ζF, a correction factor which is equal to CF actually measured in a rocket 

chamber divided by CF which we calculated under ideal conditions. And we use the ideal 

value, to find out the efficiency or the correction coefficient. And again these are quite 

large for nozzles of the order of again about 97 to 98 percent. Therefore, what we have 

done in today class is, we looked at the high temperature and high pressure gases 

generated by the propellant and being expanded in a nozzle. 
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We expressed the mass generation rate in terms of C*; that means, C star tells us what is 

the rate at which hot gases get generated from the propellant? And therefore, we wrote it 

as m° = (1/C*)×Pc×At and we called C* as a transfer function. And the expression for 

this is extremely simple, is equal to √RTc/Γ.  

We also talked in terms of the thrust coefficient CF, which described the thrust developed 

by a rocket; F = CF × Pc ×At. We determined the expression for CF, and also how CF 

varies? And we talked in terms of a thrust correction factor ζF, which is equal to CF 

actual divided by CF which is calculated based on ideal, one dimensional isentropic flow 

in a nozzle. 
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Sometimes an effective jet velocity is defined in the literature, to determine the 

composite of VJ or the velocity thrust or the momentum thrust and the pressure thrust. 

Let us examine what this effective jet velocity is? Let say that the total thrust is given by 

the momentum thrust which is equal to m° into VJ and the pressure thrust is pressure (Pe 

–Pa) × Ae. This becomes the pressure thrust. Now if we have to put both the momentum 

and pressure thrust in terms of an effective jet velocity, we could say F is equal to m° × 

V effective and this is equal to m° × VJ + (Pe – Pa) × Ae. And therefore, the effective jet 

velocity is equal to the jet velocity plus, you have (Pe –Pa) ÷ m° × Ae. This is defined as 

effective jet velocity and when a nozzle is not adapted to the ambient pressure.  

This means that when the exit pressure is different from its ambient pressure at that 

particular altitude, the effective jet velocity is different from the jet velocity at the exit of 

the nozzle; this is to take care of the contribution of pressure thrust in addition to the 

momentum thrust. We will continue with nozzles in the next class, but in the next class 

we shall try to take a look on how to shape a nozzle? And about the deviations from the 

ideal cases that we have studied and the approximations.  

 


