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Good morning. We will continue with the portion on nozzles. We will find out what is 
the effect of area ratio and define area ratio of a nozzle. We will also find out how the 
nozzle operates at different attitudes and look at some typical results. But, before getting 
into it let us quickly recap where we so that we can connect it with what we are going do 
today.  
 
We said in the last class that if we need to have a high jet velocity; we need to have a 
convergent, it should have a throat for which the Mach number is equal to one and then 
we should have a divergent. We were very clear about the throat and we said it is the 
place where the velocity is sonic; that means the gas flow velocity at the throat is the 

sonic velocity: Vt = at. 

 
We also found that any disturbance generated downstream of the throat; suppose I stand 

on nozzle here and make a loud noise or we make some disturbance, this disturbance 

cannot enter the convergent and therefore, the chamber is isolated. The reason is that the 

velocity at the throat is equal to the velocity of sound. 



 
Disturbances generated downstream cannot travel upstream. This is because the 

disturbances travel at the sound speed. Any disturbance downstream of the throat 

cannot enter the chamber. 
 

And therefore, the sonic throat essentially decouples the convergent and the chamber 

from the downstream portion. Second point was that the throat is choked. In other 

words, we told that for the given mass flow rate we can have a maximum velocity, 

which corresponds to sound speed at the throat and if we want to have higher 

pressure in the chamber or if the gases are sucked it at lower pressure we cannot 

exceed this condition of sonic velocity. This means that the throat always will have 

Mach number equal to 1 or the velocity here should be the sound speed. I think these 

findings are important. 
 

We also derived an expression for the jet velocity VJ at the exit, which we found VJ 

as equal to √(2γ/γ−1))RTc[1−(pe/pc)(γ−1)/γ]. We did not consider the convergent 
divergent shape while deriving this equation; we just said that if the chamber 
pressure is Pc and if the exit pressure is Pe then you have the pressure ratio alone 
which is important. The temperature in the chamber was Tc and this is how we 

derived the expression for VJ; so many meters per second. Is it alright? 

 
And what we started was with a vent, we derived the velocity and then looked at the 

shape of the vent; it was necessarily for us to have a convergent followed by the 

divergent such that if we were to plot it we have a convergent divergent nozzle. 
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The velocity of the gases as a function of the length of the nozzle mind you increases 

along the length of the nozzle. Initially we have a converging shape then I have a 

throat then we have the diverging shape. I get the sonic velocity at the throat and 

therefore, the velocity will keep increasing along the nozzle in the divergent. 
 

The moment we have at the throat the velocity less than sonic velocity, the velocity 

thereafter the drops. Therefore the necessity to have Mach number one at the throat 

was essential. I think this we must remember. Having said that, in today’s class we 

will try to see instead of mentioning that the exit pressure is Pe can I put it in terms 

of the area ratio and area at the exit Ae. What must be the area Ae such that the 

nozzle will give me the required velocity and that is we want to do today. 

 
Let me repeat again; see when we realize a hardware we do not know the value of 

Pe; all what we know is that we must have a configuration like this. We must have a 

diameter over here of a given size, I must also have a given the diameter at the exit 

or rather the exit area ratio. Therefore it becomes essential for me to define 

something like area ratio of a nozzle to be able to give me the value Pe such that I 

can get the jet velocity or rather I want to know the configuration of a nozzle which 

will give me the required velocity. 
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Let us put it this way: I have convergent, I have the throat, I have the divergent. I 

want know what will be my exit area here such that I can get the VJ what we want. 

We want to find out the expression for the jet velocity in terms of a diameter or an 
area ratio rather than put it in terms of the value of the pressure at the exit, which we 
called as Pe. To be able to do that we are looking at the exit area, I would like to 
define the area at the throat, because I know that at the throat the Mach number is 
always equal to 1, therefore I can define it as a critical or an unique particular area 
for reference and I call the nozzle area ratio as equal to the exit area divided by the 
area at the throat. 

 
Well. If I have to define something like an area ratio maybe I should think in terms 

of the area of the chamber over here and relate it to the area at the exit. But whatever 

be the area here the reference is the throat because that is where the velocity is 

always equal to the sound speed or Mach number is one. And it is related to the area 

of the chamber. The gas accelerates from Mach one at the throat in the divergent to 

high velocities. Therefore we define the nozzle area ratio as the exit area divided by 

the throat area and it is denoted by Epsilon (ε). Ε = Ae/At. Is it okay? Having said 

that area ratio of a nozzle is Ae /At, we want to derive an expression how the area 



ratio will affect the jet velocity or how should the performance of a nozzle be linked 

to the exit area ratio. 

 
Let me repeat the problem such that it becomes further clear. Supposing, I have a 

small rocket, I have the throat Mach number as one. I could also have a small area 

ratio or a large value of area ratio. I could also have a same rocket in which now I 

again draw this 



 
nozzle over here, I could have a very large area ratio and how do I find out and 

compare the performance of a nozzle with a nozzle of exit area Ae1 with a nozzle of 

exit area Ae2 and if the throat area is the same in the two cases; I have area ratio in 

one case which is equal to Ae1 by at At. In the second case, I have area ratio is equal 

to Ae2 by At. I want to compare which one gives me higher velocity, I want to 

compare these two nozzles and therefore, we define area ratio as exit area divided by 

the throat area. 

 
I could also have had a larger chamber something like this with much larger 
chamber, but still even for a larger chamber the throat area would describe the same 

flow condition namely Vt is equal to the sound velocity at. The area ratio would be 

Ae/At. Area ratio is always defined with respect to the throat that is exit area divided 
by the throat area. 
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We want to determine VJ and therefore the ratio of Pe/Pt as a function of the value of 

Ae/At for the nozzle. We just look at the continuity of flow; we look at the mass 

which is entering the nozzle, mass which is passing through the throat, mass which is 



passing through the exit and I write m° is equal to the mass which is passing through 

throat area × density at the throat ρt × the velocity at the throat is equal to the area at 

the exit × ρ at the exit × V at the exit. 



 
Therefore, we find that we need the condition at the throat namely the ρt at the 
throat. I need to be able to find out ρe. I do not know Ve; but Ve is the velocity with 

which the gas is exiting the nozzle. It will be equal to the VJ, which I have already 

derived. Therefore, I need to find the conditions at the throat. Therefore, let us first 
spend a couple of minutes on deriving the expression for the conditions at the throat, 
which are critical to a nozzle. 

 
The condition at the throat will specify the mass flow rate, because it is choked here 

and I will clarify this later on. Let us first find out what are the density, pressure and 

temperature at the throat. 
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We define the density at the throat as ρt, velocity by Vt, pressure at the throat as pt, 

and temperature at the throat is Tt. This means that subscript t denotes the throat 

condition. And how did we define the chamber conditions? The density is ρC, 

velocity in the chamber VC, which we said was equal to 0 pressure in the chamber pc 

and temperature in the chamber Tc. At the exit ρe, exit velocity Ve , which is equal 

to the jet velocity VJ at the exit, pe is the pressure at the exit; well these are all the 

variables what we have. 
 



We want us to find out the value of ρt as a function of ρc, may be pt as a function of 

pc and Tt as a function of Tc. Therefore, we again just look at the flow conditions. 

We are interested in the condition at the throat, the conditions are given by subscript 

t over here for ρ and V. We treat this convergent as a control volume or we 



 
are considering our attention only in this small region, which I show hatched over 

here. Gas enters at a pressure pc at velocity 0 at a temperature Tc at it leaves at the 

throat with a condition of ρt at a velocity equal to the sound velocity. The pressure is 

pt and the temperature is Tt. 
 

Let us write the expression for this control volume. Let us again assume adiabatic 

condition and therefore we can write the enthalpy entering is hc plus kinetic energy 0 

is equal to h at the throat + we have Vt
2/2 which is kinetic energy per unit mass. We 

must be able to write this steady flow energy equation; same mass flow is here, 

enthalpy in the chamber corresponding to this initial kinetic energy of 0 while at the 

throat the enthalpy is ht and Vt
2/2 is the kinetic energy. 
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Now let us simplify this equation. We get from this equation Vt

2/2 is equal to hc 

minus ht. And what is the difference in this enthalpy?  It is equal to: Cp ✕ (Tc – Tt). 

Therefore what is Tc minus Tt; tt is equal to Vt
2/2 Cp. What is the value of C p in 

terms of gamma: γR/(γ−1). How did this come? We had derived in the earlier class: 

Cp minus Cv is R, Cp by Cv is gamma and therefore, Cp is equal to γR/(γ−1). 

Therefore, we can write this expression as equal to (γ−1)/2 ×Vt
2/ γR. 



 
And therefore, we can now write the value of Tc: We take Tt on the other side to 

give Tt × {1 + (γ – 1)/2 ×Vt
2 / γ R Tt} . What did we do? We have taken Tt at the 

denominator, and therefore, I have gamma γ−1 into Vt
2/ γRTt. We know that γRT  is 

the sound speed square or γR × Tt is a sound speed at the throat square. Vt is also 

equal to the sound speed at the throat and therefore this is the Mach number of one 

square and we get 1 + (γ−1)/2 × Mach number square. Mach number is one and 

therefore I get the value of Tt × (1 + (γ−1)/2). This gives us the value of the 

temperature at the throat as a function of the chamber temperature Tc. Tc/Tt = 

(γ+1)/2  or rather Tt/Tc = 2/(γ+1). 
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Therefore, for gamma of 1.4, we find that the temperature at the throat is 

approximately 1 over 1.2 times that in the chamber. If the chamber temperature is 

2000 K then it will be something near to 1650 degrees; in other words, if gamma is 

equal to 1.4 the value of Tt by Tc is equal to 1 over 1.2. Therefore, the temperature 

falls at the throat and it is less than the value in the chamber. 
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Now what will be the value of pt by pc? We have derived the expression in the last 

but one class. It is equal to (Tt/Tc)γ−1/γ . Please look back in your notes. Let us see 

how we got this value. We had p/ργ is a constant for an isentropic flow and p by ρ×T  

is a constant for an ideal gas from the equation of state. Solving for this we got this 

particular expressions. In fact, you will remember in the expression for VJ, we had 

the expression 1 − (Pe/Pc)γ−1/γ and how did it come, this was essentially Te by Tc 

and we expressed it in terms of the pressure ratio. We therefore have pt /pc = 

[2/(γ+1)]γ/(γ−1). 

 
What is the value of ρt/ρC? This equals [2/(γ+1)]1/(γ−1). This comes from the ientropic 

relation p/ργ is a constant.  
 

We have derived the conditions at the throat namely the value of the temperature at 

the throat, the value of pressure at the throat and the value of density at the throat as 

a function of the conditions in the chamber pressure and which is known to us. The 

chamber conditions are given to us. 

 
I want us to go back and apply these three relations since we know the density at the 

throat may be we have to find out the density at the exit. And then find out the value 



of the exit area ratio as a function of the exit pressure or alternatively the exit 

pressure as a function of the area ratio that we are interested in. 
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Therefore, I hope that by now we know how to evaluate the conditions at the throat 

of a nozzle. We have the throat conditions from a chamber pressure pc and 

temperature Tc and density ρc.  We know how to find out the conditions of pt,  Tt and 

ρt . 

 
Now, let us go back and solve the continuity equation; we said area at the throat× 

velocity at the throat × the density at the throat is equal to area at the exit ×velocity 

at the exit × density at the exit or rather from this I get the area ratio ε = Ae/At = Vt × 

ρt ÷ (Ve × ρe). 
 

I want to substitute the values. We know the value ρt in terms of ρc; it is equal to 
[2/(γ+1)]1/(γ−1) . Now we have the value of ρt/ ρc into Vt. We know that Ve is equal to 

VJ. What is the value of VJ?  VJ = √2γRTC/(γ−1)×{1−(pe/pC)(γ-1)/γ}. 

 
Now, we would like to somehow get rid of ρe and also Vt. We can write Vt as the 

sound speed and this is equal to at and therefore we can write it as √γRTt viz., equal 

to under root gamma into specific gas constant R into temperature at the throat. 
 



Please be careful since these are all simple algebraic expressions and we are 

substituting one into the other and in the process we are also learning how the 

properties are varying. 
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Let solve the equation for the area ratio ε: It is equal to ρt/ρe × Vt/Ve  and equals 

[2/(γ+1)]1/(γ−1) ×ρc ; ρc can be written as pc/ RTc from the ideal gas equation p = ρRT. 
 

And now, we have γR and let us strike of some of the numbers in numerator and 

denominator; √γ and √R go. We will take Pc outside; √2/γ−1×[1− (pe/pc)γ−1/γ . We 

have √Tt /√Tc. This is divided by ρe.  

 
We now have an expression for area ratio as given by the above expression viz., ε = 

[2/(γ+1)]1/(γ−1) × pc/(RTc) ×√Tt/TC ×1/ρe ÷ √2/(γ+1)[1−(pe/pC)(γ−1)/γ . We would like to 

simplify the expression by expressing it as ratio of pressures so that we can write it 

as a function of the pc/pe alone. For this purpose, let us take a look at ρe. We can 

write the value of ρe in terms of the pressure at the exit. The pressure at the exit 

divided by density is equal to specific gas constant into the temperature at the exit. I 

simplify this expression to give me ρe = pe/(RTe). Substituting this value of ρe, we get 

an expression in terms of pc/pe. We can also make some changes for the value of 

Tt/Tc that is the temperature at the throat and chamber. 
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And as we had seen earlier that the temperature at the chamber divided by the 

temperature at the throat is equal to 1 + (γ−1)/2 into Mach number squared and the 

Mach at the throat is one. The value of Tc/Tt = (γ+1)/2. 

 
Now, these two equations namely the value of temperature at the throat in terms of 

the chamber temperature and the exit gas density in terms of Pe by RTe are 

substituted in this particular expression for ε. We therefore get the area ratio ε = 

2/(γ+1)1/(γ−1) ×pc/RTc × √Tt /Tc. We can also write the value √Tt/Tc, as [2/(γ+1)]1/2 . 

We had got from ρe which was equal to RTe/pe and this is divided by the same value  

√2/ (γ−1) ×(1 – (pe/pc) γ−1/γ). Now, let us simplify this: R and R gets cancelled and 

we get pc/pe and Te/Tc. If we were to put it in terms of Te by Tc in terms of pc by pe 
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we get an expression for epsilon ε = {2/(γ+1)}1/(γ−1) × (pc/pe) and R got cancelled 

out. Therefore, now we are left with Te, that is the exit temperature and there is 

nothing else left. Let us write the value of Te over here and we have taken Pe inside 

and here we have Tc. And this × 2/((γ+1)1/γ −1 and this [2/(γ+1)]1/2 ÷ under root of the 

denominator. This comes out as √2/(γ−1)[1−(pe/pc)(γ−1)/γ] . 

 
Now immediately we see that 2/(γ+1), 2 gets cancelled and γ+1 comes on top in the 

denominator and therefore now I can write the denominator as equal to √(γ+1) 

÷(γ−1) × [1 – (pe/pc)(γ−1)/γ}. 

 Let us now simplify the numerator; we have [2/γ+1]1/(γ−1) . 
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And now we can express these terms: express Te/Tc in terms of pc/pe. Please 

observe that we have been doing this by setting Te by Tc using the isentropic 

expansion process as (pe/pC)γ-1/γ. You will recall we have done this several times and 

therefore, if now we say pC/pe and (pe/pC)(γ−1)/γ ( multiply this together), we will get 

(pC/pe)1−(γ−1)/γ, which is equal to (pC/pe)1/γ because 1 – (γ −1)/γ  gives 1/γ. 
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And therefore, we write the area ratio ε = (pC/pe)1/γ × (2/(γ+1)1/(γ−1) ÷√(γ+1)/(γ−1)[1-

(pe/pc)(γ−1)/γ] . 

 
What does this expression tell us? This expression tells us that the area ratio of a 

nozzle increases as the chamber pressure increases or rather as the ratio of pC by pe 

increases. The increase in Pc/Pe can come about either by increasing the chamber 

pressure or by decreasing the exit pressure. If we have a very low value of exit 

pressure my pressure ratio is larger and we require a larger area ratio nozzle. Of 

course, gamma also plays a role, but only a secondary role. The main aspect of area 

ratio comes from the change from the variations in the value of the chamber pressure 

to the exit pressure. 
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Let us take a look at some of the values which I have plotted in the slides which will 
be now presented. First, we see that area ratio is defined by the value of Ae by At. 

The expression we had got we had the jet velocity VJ or Ve given by 

√2γ/(γ−1)×RTC[1−(pe/pC)(γ-1)/γ. 
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And thereafter we wrote the area ratio in terms of these parameters and got this 

particular value, which worked out to be {2/(γ+1)}1/(γ−1) and a whole series of 

gamma terms. 
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We also had the expression in the denominator as √(γ+1)/(γ−1)×[1− (pe/pC)γ−1/γ] . 

When we plot the expression for ε, we get: 
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the area ratio as a function of pC by pe. As pc/pe increases, the area ratio increases. 

Further, as the value of γ decreases from gamma of 1.4 to 1.1, we find a larger area 

ratio is required to give the same value of pC by pe. 
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This slide gives area ratios for larger value of pressure ratio. Again, the value pC/pe 

is expressed on the X axis while the area ratio ε is shown on the Y axis. You find 

that as γ decreases we need a larger value of the area ratio for the same pressure 

ratio. In other words what it tells me is if the gases have a smaller value of γ then I 

need a larger area ratio to give me the same value of pressure ratio. This is all about 

area ratio. 
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What is it we have done? We found out the value of the area ratio and related it to 

the value of the chamber pressure divided by the exit pressure. In general area ratio 

of most of the nozzles are between 15 to 400. 



 
If we were to look at the expression for area ratio you find that when pe becomes 

zero, we need area ratio, which is something like infinity. We cannot have infinity, 

because we cannot construct a rocket, which gives me a very large value of area ratio 

going to infinity. We cannot keep on extending because the mass of my rocket will 

keep on increasing; therefore, the general practice is to have area ratios between 15 

and 400, 15 for those rockets, which operate within the atmosphere or which operate 

near to the Earth and 400 or values around this for rockets, which operate in the 

vacuum regions. Therefore, the question which now crops up is if I have a rocket 

whose nozzle whose area ratio is either too small or large, how does it perform? 
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Suppose, I have a rocket nozzle, which let us say has a small value of Ae by At: this 

is the value ε1 which is equal to Ae1 divided by At1. For the same condition of the 

throat, I also have another rocket, which has a larger area ratio, let us say Ae2 for the 

same value of let us say At1. The latter is ε2 = Ae2/ At1. Now suppose the chamber 

pressure is the same in both the cases. What we going to get is a smaller value of pe2 

as compared to pe1 since the area ratio ε2 is more. Stated in the reverse, pe1 > pe2. The 

smaller nozzle expands to a higher value of pressure; if area ratio increases as in the 

case of nozzle with area ratio ε2, the value of pe2 is less than pe1. 

 



We also know that the ambient pressure decreases as the altitude above the surface of 

the Earth increases. At sea level, the ambient pressure is one atmosphere i.e., 105  



 
Pascal. As the altitude increases, the pressure decreases till at an altitude 

corresponding to one at which at the edge of the atmosphere let say around 50 or 60 

kilometers altitude, the pressure will go down to a very small value and when we go 

to geosynchronous altitudes its almost perfect vacuum. The ambient pressure with 

respect to the exit pressure of the nozzle is expected to play a role. Let us assume 

that in the specific case pe1 for the nozzle with area ratio ε1, the ambient pressure is 

Pa. 
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Let us show the values or pressures in the figure. In the figure here, we show the 

pressure variation along the nozzle. In the first case with ε1 area ratio, the pressure in 

the nozzle continually decreases. It starts with the value of pc comes down to a value 

of pe1. In the second case, for the same chamber pressure pc, it starts from pc, but 

continues further till we get a much lower value of pe2 at the exit. 

 
Let us consider a situation where in the ambient pressure is equal to Pa. I show Pa to 

be somewhat less than the value pe1 this figure. 
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The pressure is varying in the nozzle along its length. The ambient value of pressure 

Pa in the first case of the small rocket nozzle is less than pe1. In the second case, the 

rocket nozzle is bigger and therefore the gases expand further with the exit pressure 

being less than the ambient pressure Pa. 
 

Therefore in the first case the pressure at the nozzle exit is greater than the ambient 

pressure? In the second case, the pressure at the exit pe2 is less than the ambient 

pressure Pa. In the first case the expansion is not completed; therefore, we call this 

nozzle as being an under-expanded nozzle. In the second case, we expand it over and 

above the ambient pressure; therefore, we call this particular nozzle as an over 

expanded nozzle. 
 

Are there any problems with these two nozzles? What we have done when the nozzle 

area ratio is small, that is, the area ratio is to a lower pressure than what is possible, 

the expansion is lower than what could have been possible. Therefore we are not 

able to get a high jet velocity because the exit pressure has still not been able to 

match the ambient value. The expansion is incomplete. We could have got much 

more jet velocity had we really expanded it a little bit more come till the ambient 

pressure. We are losing some velocity. 

 



What is the problem with over expanded nozzle? Well the pressure here itself within 

the nozzle is equal to the ambient pressure. At the exit, the pressure is going to be 

even lower. However, at the exit, the ambient pressure is higher. Mind you, the flow 

in the divergent is supersonic and does not know the conditions existing ahead of it. 

All of a 



 
sudden the supersonic flow finds a higher pressure because it has already been 

expanded to a lower pressure and this is clearly not possible. Therefore, it is 

necessary that something like a shock stands over here within the nozzle; that means, 

I have supersonic flow it is not able to see anything before it, but all of sudden when 

the flow reaches it sees a higher pressure and therefore something like a shock is 

required to match the exit pressure. 

 
The situation is like the following: I have a nozzle here and now the pressure has 

come to the ambient over here itself and therefore, if I were to plot the pressure, the 

pressure is going to decrease further. I need to have a shockwave and the flow downs 

stream of the shockwave is subsonic. The divergent nozzle considering the subsonic 

flow will act as a diffuser instead of a nozzle and the pressure will increase till it 

reaches the ambient value at the exit. That means there is going to be a shock and the 

adverse pressure because of the shock would cause flow to separate at the walls of 

the nozzle. Since we have a higher pressure at the nozzle wall, the performance of 

this nozzle may be even better than had the flow not separated. But, normally this 

flow separation does never happen symmetrically, and it’s leads to something like 

side forces, and therefore over expansion is never preferred at all. I will get back to 

this point a little later; this point may not be clear at this point in time. 
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What we are discussing is that if the nozzle area ratio ε is not properly tailored and 

we get the pressure at the exit of the nozzle pe to be greater than the ambient pressure 

Pa, we have under expanded nozzle. In this case the nozzle performance is rather 

poor; we do not get the high value of jet velocity which is possible by further 

expansion to the ambient pressure. But, in case the nozzle exit pressure pe is less 

than the ambient pressure Pa, we will have something like a shock. The increase in 

pressure at the shock and in the subsonic flow subsequently will lead to flow 

separation at the walls of the nozzle. And the flow gets separated from the walls due 

to the adverse pressure gradient. Flow separation does not take place symmetrically 

along the circumference, with result that in some regions we have higher pressure, 

where flow separation takes place. In regions where the flow is not separating, the 

pressure is lower. The low and high pressure distributions along the circumference 

which give rise to side forces and this is not desirable. 
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We will come back to this point after seeing a few pictures on flow separation in 

nozzles. What do we really mean? Let us go back and make a plot of pressure 

distribution with flow separation or let us say an under expanded nozzle. How does 

the flow behave? Let us consider this diagram. A chamber, a nozzle and the center 

line of the nozzle. We said that for the under expanded nozzle pe is greater than Pa. 



Therefore the flow comes here, it meets lower pressure; therefore I have something 

like flow is going to expand out; as if it bellows out. And how does the flow expand 

out; we 



 
have rarefaction fans or expansion waves which are generated at the nozzle exit. And 

similarly over here that means the plume comes here, this is the low-pressure region; 

this is higher value of pressure and when the flow expands out as a series of 

expansion fans. So we have the expansion waves being shed at the nozzle exit while 

the plume spills out. I have here the back-pressure, which is the ambient pressure 

surrounding the expanded plume. The same expansion fans are shown for a two 

dimensional geometry.. 
 

After the expansion waves, pressure in the plume matches with the lower pressure 

ambient. At the center the flow velocity is still higher. Therefore, at the center line, 

we have expansion, therefore here the pressure is going to be less than the value of 

Pa; that is the nozzle with under-expansion forms expansion fans that meets the 

expanded boundary of the plume. The expansion waves are reflected back from the 

plume surface as compression waves, the compression waves converge to form 

shock waves as shown. The pressure behind the shock waves increases more than the 

ambient pressure and the shock waves intersect as shown. We have compression 

region after the shocks. The compression waves subsequently hit the plume as 

shown. They are reflected back as expansion waves. And therefore now, the pressure 

decreases from the expansion waves. In this way a series of zones of pressures more 

than the ambient pressure and less than the ambient pressure are formed in the plume 

from the nozzle. The formation of these zones is due to the interaction of the 

rarefaction fans and shocks with the boundary of the plume. 
 

In regions wherein pressure is high the temperature is also high. If the temperature is 

higher, the plume becomes luminous and you can see the pattern with alternate 

bright and dark zones. 
 

We find that because of under expansion, there is further sudden expansion that 

means there is an expansion fans and this expansion fans impinges on the plume 

surfaces. And when the expansion fans impinge on the plume surface, the expansion 

waves are reflected as a compression that means as weak oblique shocks. These 

oblique shocks further compress the medium. The interaction of the compression 



waves with the plume surface forms expansion waves and the process of 

compression and expansion continues. 
 

If we were to have an over-expanded nozzle, we will have different flow pattern in 

the plume. A shock is formed within the nozzle and this compresses the initially 

expanded flow. This is because pe is less than Pa. The flow being supersonic, we 

need a shock 



 
which will match the higher value of pressure. Therefore, what is going to happen is 

the plume boundary will come down like this since the ambient pressure is higher. 

The shock waves interact with the plume boundary and are reflected back as 

expansion waves. The plumes expand following the expansion or rarefaction fans. 

The expansion fans are reflected from the plume as compression waves and the 

pressure in the plume thereafter increases. And so the processes of compression and 

expansion continue along the plume. 
 

In other words, in the case of overexpansion, we get a higher-pressure region little 

bit away from the nozzle exist. In the case of the under-expanded nozzle, we get a 

high-pressure region just at the nozzle exist, that means over here, I get a high-

pressure region following the oblique shock waves in the case of under-expanded 

nozzle. 
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To be able to appreciate this point, I show some slides of the nozzle plume and this 

will become clear to you now. 
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This shows a particular second stage rocket of PSLV, and here you see this is the 

divergence portion of the nozzle. This is the combustion chamber. And if we take the 

inside configuration of the nozzle, it will have a throat and will come back with a 

convergent shape like this to the chamber. Therefore, we are looking at the outer 

portion of the nozzle here. 
 

When the rocket fires for some time, the nozzle runs hot and become red hot. We are 

looking at this hot diverging nozzle. It becomes at red hot as time progresses, 

because it is heated by the hot gases. And then hot gases are converging towards the 

center after leaving the nozzle like in an over expanded nozzle. You see the plume 

becoming luminous after the shock wave. The downstream is not clear, because 

water is sprayed to cool the plume. 
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Let me go to the next one, I show the same nozzle again. It is red hot. The white part 

is the luminous zone after the oblique shock waves. The oblique shocks are seen and 

they interact along the base. 
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Let us go to some other experimental firing; this shows the engine test wherein at the 

exit of the nozzle the flow is probably over expanded. And therefore, you have 

something like shock waves, which increase the pressure and temperature in certain 



regions of the plume. These regions become luminous. And what happens is the high 

pressure region over here, gives you a higher pressure and higher temperature. If I 

have oblique shocks like this, which give us 



 
a high temperature region. It looks like a shock diamond you know, I have a high 

pressure region which is luminous. Afterwards, the oblique shocks comes here, I 

have rare fractions fans coming another oblique shocks coming; I have another white 

patch over here. Again the process, I have something like a series of shock diamonds 

from the shocked high temperature gases.. 
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In continuation, this slide shows a space plane SR-71 We see the shock diamonds in 

the plume in this particular case. And we continue with this, this is a test of an 

engine. And here you find, there is a shock here and something like this. This is 

because the exit condition is over expanded. 
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We will continue with nozzles in the next class. We will review overexpansion and 

under-expansion and then proceed further. 


