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So we looked at a little introduction to calculus of variations, right, and I think we saw one

application which was the shortest distance, okay, in flat surface, the usual thing at this point

would be that in the course on calculus of variations the usual thing that you do at this point

was derive an expression for geodesics or something of that  sort,  shortest  distance for 2

points in the surface of a sphere.

Right, that would be the, so you can easily pick up some book and go through, I mean, the

derivations are pretty straightforward, it is all just calculus at that point, okay, so I am really

not going to be doing that today, since the amount of time that I am going to spend on this

topic  is  really  not  that  much,  we  have  only  spent  a  few  classes  on  it.  I  will  look  at

applications directly, okay, just to first recollect, right, to pull the problem.
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So J of y is the functional, it takes the function as an argument and returns a number, a real

number in this case, okay, so this is the map, just like our norms and so on, even the norm

took a function and returned a number, you understand what I am saying, so we have seen

this before, and if you want an extremum for this, either a maxima or minima, then we saw

that you could take the first variation, okay.



And to find out just to put it in context to find out whether it is the maxima or minima, if it

were a regular function what would you do, you take the second derivative and check the

sign, in this case you would take something called the second variation, which also I am not

going to do in this class, but I just as a piece of information right, they are the first variation,

you could look at the second variation and so on.

So we are not going to look at the second variation, you can go look up, read up something

on calculus of variation if you want to look at it. So you can set the first variation to 0, right

and get the corresponding Euler Lagrange equation, right, which is what we derived in the

last class, we applied it to the shortest path between 2 points in a 2 dimensional Eulerian, in

the plain as a blackboard, it is a 2 dimensional Eulerian plain okay, fine, okay.

So can we do something interesting with this, fine, so I will look at a simple problem first,

first in one dimensions, we will see what we get, so consider this problem, so in this class I

am going to mix my notation a bit, so I want you to be a little careful, okay, I am going to use

some kind of mixed notation, those are subscript here means differentiation with respect to x.

Yes, I know I used prime here to mean differentiation with respect to x, but in this case there

was clarity, it was clear. You can say well even in this case it is clear, but you will see that as

we go along there maybe ambiguity, so I choose to introduce this notation at this point, right,

so you will see me use both of these. You will see me use both notations, okay, the subscript

indicates differentiation with respect to whatever that parameter is, is that fine.

So what is the Euler Lagrange equation for this and if I am given so right because like we

said the paths, the end points maybe fixed, you may be given U of a, you may be given that,

you may be given those auxiliary conditions, right, just like I was saying earlier if I want to

walk from your dining hall to this classroom then the end points are fixed, the path may

change, but the endpoints are fixed.

So I have to prescribe to the boundary conditions and the Euler Lagrange equation for this is

dou F/dou y, in this case it is u with this notation just so that you see the chalk dust is just

chalk dust, right, so this is, okay, the Euler Lagrange equation would be that dou F/dou u = 0



because it is not a function of u and only that is there and that gives me, is that fine, which is

1D Laplace equation, Laplace equation in one dimension, okay.

So this problem extremizing, finding the extremum for this problem is the same as solving

this, okay, the big advantage so far it looks like other than the fact that you have to find the

extremum, the big advantage here so far is there a difference between the 2 formulations, are

they identical? In the sense there is a difference, right here we are really not asking for the

candidate function to have a second derivative.

We are not asking that the candidate function have a second derivative, I can substitute any

path that has a first derivate defined, okay, and I am going to integrate it, it can have finite

number of continuities, countable number of discontinuities, whereas this requires that the

second derivate exists, so there is a difference, it looks like there is a difference, this seems to

look for solutions in a larger set of problem than does this, okay, is that fine.

Okay that is something that is of interest, we will pay attention to that, that is something that

is  of interest,  but okay so I know how to solve this, how do we solve this  numerically?

Yesterday what we did was we did analytic solution, I knew there was an analytic solution so

I sort an analytic solution, even this has an analytic solution, because it is an OD, but the

point is not to use the fact that we know that it has an analytic solution.

How would you solve it numerically, okay, so recollect we defined in the beginning of the

semester we defined Hat functions, maybe we will use Hat functions, you may be wondering

other an interpolating for what purpose we define the Hat function, we will try to use the Hat

functions, right, what was the Hat functions.
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Ni what was it is definition do you remember? 0 if x < xi-1 x - x1-1 for something like that, I

hope it is exactly, I hope the definition I am giving is the same, just open and close, we have

to be careful that we did is the same, but it does not matter you can check it out to make sure

I am being consistent, okay, that was the definition and of course a small graph just to remind

you so that is i i-1, i+1, the function looks like that okay, it is called the Hat function.

Just to recollect, and this value is 1, this is x that is Ni, okay, right, so let us say the function u

can be represented as Ui Ni okay and clearly U0 will be from the boundary conditions, U0

will be U sub a and uN will be U sub b that is given, these are known. These boundary

conditions were given, okay, so we will bear that in mind, right now I am only looking for a

general expression right when you can work it out properly.

I am only looking for a general expression because I just want to give you a drift of how

these things work okay. So what is dou u dou x what is U sub x and do not get upset that I am

using a prime here and a subscript there, as I told you, I am going to freely mix the notation

right, there is clarity here, there is a reason why I am doing this you will see as we go along,

the reason why I am doing this.

Right, both of them are differentiation with respect to x, there is no confusion right now,

okay, and as it turns out and I want this also, that functional can be written in deed, can be

written as is that right, it is Ux squared integral which is the same as this dot product, right,

we happened to be fortunate at least for this example I happened to be fortunate that I am able

to write it like this so I make use of that right.



Because I want to keep life simple, but otherwise actually it does not matter, you would just

substitute there, I just want to keep it, you understand I am just making use of the fact that

that worked out for me, so now what I want to do is I want to use so the early I should not

instead  of  saying  U  you  remember  I  should  actually  say  Uh  to  indicate  that  it  is  an

approximation where what is h?

I will make it  identical  right for any i  they are all  equal,  equal intervals  as I said in the

beginning of the semester in this class, I am going to assume they are all equal intervals okay

we  can  worry  about  non-equal  intervals  elsewhere.  So  what  is  the  approximation

representation for the functional, see now we can represent the functional. The representation

for the functional, okay this is the point where you can make a mistake.

You have to be careful, okay remember when you are using subscripts and you are doing

these kinds of things you have to change the subscript when the second term comes along

right, this is the potential location for error, so I changed it to j, it is the potential location for

error, okay, fine. Now in order to go on with this so this is just, this machinery will now just

roll, there is nothing, it is just a matter of manipulation, okay.

What we need to do is, we know that we are going to get dot products of things like Ni Nj so

we have worked this out before, but we will let us just look at it.
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So if this is Ni, if Ni is defined in this fashion N prime i or j it does not matter = what is it 0 if

x < xi-1, the slope is positive 1/h if x less than, okay, is that fine, okay, now we just take the

dot product, now we know this Ni Nj, now we just take the dot product. Prime i dotted with N

prime j, so what does this give me? what are the possibilities that we have? See the graphs

basically look like that where this is the height 1/h.

The graph basically looks like that, okay, so you can have the negative of the j, that is j = i-1,

if  j  =  i-1,  what  is  the  i-1  function  look like,  let  me take  a  different  coloured  chalk,  the

derivative of the i-1 is this, this is the derivative of Ni, this is the derivative of Ni-1. They

overlap only on this interval, one is negative, the other is positive, so the product gives me

-1/h squared if I integrate one h will go away, so it will give you -1/h, right.

So it is = 0 if j is < i-1 right, it = -1/h, if j = i-1 = well if it overlaps exactly j=i then this is

positive and that is positive because -1/h * -1/h is still 1/h squared okay, there are 2 of them

and the sign is positive, so it becomes 2/h, j = i and again -1/h if j = i+1 and 0 if j > i+1, right,

if we have got the dot product, so in this summation, this summation of j, the only sensible

values of j that we take are j is i-1, i and i+1.

All the other dot products are 0, is that fine, is that okay, the only terms that we take are i, i-1,

i, i+1, right, so in fact I could replace that, I can maybe I will rewrite it, it is okay, so I can

rewrite that now, right.
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I can rewrite that as Jh Uh = 1/2 is that fine, okay, “Professor - student conversation starts”

please, where is that, I am sorry, which one, no no but you are going to integrate so you will

get a kind of a thing, it is essentially 0 to h that is what you get, so this will give you a xdx/h

squared xi-1 to xi so that xi+1 that will give you an extra h is that fine okay “Professor -

student conversation ends”

So we will come back here clearly I can take the summation out okay, so this is going to turn

out to be or I can write it as 3 terms, so this is going to turn out to be 1/2, we will write it as

1/2h I think, fine, I can factor out the h also 1/2h summation i = right now I will write it from

1 through n-1, okay, because I know the first point and last point are basically boundary

conditions.

The first interior point will also have a boundary condition in it, but I am not going to take

care of that right now okay, right, just to indicate you that boundary conditions had to be

taken into account, I will only remove the first and last points. So what does this give me, Ui

Ui-1, what is the dot product of N prime i and N prime i-1? “Professor - student conversation

starts” -1/h “Professor - student conversation ends” so that is the minus sign, there is an h

there.

Okay + Ui squared and there are 2 of them because, that was 2/h, Ni prime dot Ni prime, Ui

Ni prime dot Ui Ni prime that gives you Ni prime dot Ni prime which was 2/h, okay, so 2 Ui

squared + what is the last one, or minus rather Ui Ui+1 and plus there will be these as I said

boundary conditions which will be like Ua squared/2h + Ub squared/2h and so on, okay there

will be 2 terms, 2 extra terms for either end, okay, which I have just knocked out.

I mean I could have left it in there, but I just took it out just to show you that they will come

out remember that when i = 1, the Ui-1 will be Ua and when i = n-1 this Ui+1 will be Ub just

bear that in mind, okay, the boundary condition still there, it has not disappeared, okay, now

what, differentiate and set it equal to 0, that will be easier. All of it within the summation = 0,

did I forget something.

Now you have to ask the question what happens, how does it work, so what happens to these

thing, when i not equal to j it is obviously 0, right when i = j this is obviously, so if I am



differentiating it with respective j you have to figure out all the ones when this is i, am I

making sense.

“Professor - student conversation starts” yeah your question, yeah, I mean that is what I

was saying when i=1 you are back here in this line, when i=1 if this is U1 this will be Ua and

when i=n-1, Ui+1 will be Ub, you have to take care of that, I am not writing that, then I

would have to write it from 2 to n-1 and write a liner term, these are product terms there will

be 2 liner terms and then there is this, 2 first order terms.

No no listen to what I am saying, so you can 2 to n-1 and then you will get a U1 times Ua

when i=1 you have to do something special that is what I said earlier, when i=1 you have to

do something special. This term when i=n-1 you have to do something special, Ui+1 will be

Ub, you can write it as a summation going from 2 to n-2 and just like I wrote these 2 secular

terms you will have 2 other terms which will be U1, Ua Un-1 Ub.

It is not clear, from your face it is not clear whether you understand what I am saying or not,

just write out the summation, but the U’s do not figure in the dot product they only work with

the Ni’s there functions are Ni’s the U’s are just coefficients, that will be this function, only

the first one N0 N0 will be nonzero all the others will be 0, N0 N1 will be the one that I am

talking about here, which will give me U1 Ua.

It cannot be, how can that be, how is it possible you take each one of these, there is only one

summation now, it cannot a double summation anymore, I opened out the other summation,

this is the other summation, no these are the actual terms, when i is 1, oh you are saying I will

have an n-1 term here, I have an N0 term here is that what you are saying, do all of them

duplicate that means you are saying this 1/2 goes away, all of them will duplicate?

So this coefficient which I am anyway I guess I got away with it so far because I always set it

= 0 is that fine, you are saying that when i=1 here this is Ni-1 which is N0 and when i=0 here

you have a N0 here, but then what the Ni-1 does not exist, but when i=1, but you do not get

another Ni-1 Ni-1 you get only one Ni-1 Ni-1, there will be only one, all the others there will

be 2 and that is going to show up here actually.



It does not matter you can actually evaluate this term when you will see that it should come

out the same way, does it come out the same way? There will be 2 of these, there is a 0 term

here, there is a 0 term here, no if you take i=1 see this 1/2 multiples only the summation

anyway we will work it out, I think I do not want to we are already 5 minutes into this, so

what  we  will  do  is  now  since  we  have  had  this  discussion  you  can  check  out  these

coefficients set this equal to 0.

You will  now pull  the plug on this  whatever right because we work it  out.  “Professor -

student conversation ends.” So you can work out the details there, I think that is something,

because with this counting you always have to be careful, so, right you can work out the

details of, it is a matter of counting fine, so you have to make sure that you count right, but I

will do it in a different fashion because I want to as I said.
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Let me do J of h the same thing if you want taking about Hat functions and this is the reason

why this doubling occurs that you are talking about so to give you an insight into where

possibly that doubling occurs let me give you summation i=1 through N Ui - Ui-1 squared/h

squared, is that okay, we did Hat functions first then we did Taylor series representations of

derivatives directly right.

So U sub x is Ui – Ui-1/h right this was the other, this is the other representation that we had

Ui Ui-1 at h, am I making sense this is the other representation that we had. So you can

differentiate this dou J/dou U you can do the same thing or we can, I will cheat, N and what



does this give me, you have to be a bit careful here, okay, normally I would do it with J

because I want to be careful but today I am going to we will push it slightly.

So what do you have here, you have 2 Ui Ui-1 times 1/h squared, anything else? + when i is

i+1 you have to shift it right, that is why I said doing it by J is easier, if you are differentiating

with respect to 2, U2 for instance U2 then when i is 2 this is U2, when i is 3 this is U2, this

will contribute + what does this give me Ui+1 – 2 Ui, 2 of those * -1 + is there any + fine,

okay, so this gives me what?

If I set this = 0 so this is not, actually there is no summation here anymore, so if I set this = 0

what do I get? Actually even there is no summation anymore but it does not matter, we will

get back, what do we get? 2Ui+1 - 2Ui+1 2Ui+1 -2Ui-1 so you will get -2Ui+1 +4Ui-2Ui-1/h

squared, of course there is 1/2 outside, and I set it = 0, which is really a point that I was trying

to get true okay.

So  effectively  you  get  the  discretization,  you  get  the  discretization  of  which  is  the

representation of Uxx = 0, am I making sense, it is a representation of Uxx = 0, okay, so all of

this was leading somewhere, let us see where it goes, that is in one dimension, maybe I will

just quickly do this, so if you have Uxx = 0 or Uxx = f or whatever it is there is a game that

what you call it that we play, that is one way, this is calculus of variations part.

I am going to come back to the calculus of variations part, but I want to take a slight detour

before I go there, okay, so we can choose any other functions instead of choosing, I chose N

here being Hat functions, but it could have been N0 N1 N2 corresponding to quadratics or N0

N1 N2 N3 corresponding to cubics, we have done higher order representations also. Just so

that we do not get confused with that.

I  will  change  the  bases  functions  maybe  to  say  something  like  B  and  B  has  enough

derivatives for me to do whatever it is that I am going to do now, so what am I going to do

now?
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I have Uxx = 0 or Uxx = f whatever, I can project this equation directly on to these functions

okay, so I basically say that Uxx dotted with B, I project that, right I project this operator on

to this fine. So what does this turn out to be integral, this is a dot product, but this actually is

Uxx Bdx on the interval a, b and that is supposed to be 0, now I will do integration by parts,

integration by parts gives me.

You understand when I said, B has enough derivatives okay, that is what I meant, I am going

to differentiate B, so I can do integration by parts one more if you want, once more, right, I

can do integration by parts one more time, so you get, is that fine, right, all I am doing is

integration by parts, so if B is sufficiently smooth I can transfer those derivatives and again

like we did earlier so there I did it as a variational problem like we did earlier.

The requirement on the number of derivatives on U has now decreased, the smother I take my

B, the less derivatives I need to insist on my U, am I making sense, you can admit a larger

class of solutions so if you are talking about say something like wave equation, nonlinear

wave equation, wave equation, where you can have a step function. You cannot substitute it

into the differential equation and check whether it is a solution or not.

Because you cannot take the derivatives, okay, whereas in a formulation like this, you can

actually substitute it in and if your B is 0 at A and at the end points that term goes away

anyway, you understand, if the Bs are 0s at the endpoint that term goes away anyway or you

can choose it so that something happens to Bx, I mean it is up to you, how you apply the

boundary conditions, right.



So it actually turns out that so the U that you get could satisfy this but you may not be even

able to verify whether that is true or not, it may not have a derivative, if it has a shock it does

not even have a derivative, right, the beginning of the semester I said wait a minute here we

have dou u dou t + u dou u/dou x = 0 even though we gave it smooth initial conditions the

discontinuity appear as part of the solution.

Then  the  question  was  how  do  I  substitute  it  back,  if  there  is  discontinuity  I  cannot

differentiate,  so in the classical  sense is  it  a solution,  the question does not  make sense,

whereas if you were to convert it in to something of this form you could still ask that question

and answer it, okay, right, this is just for lingo, just to get the jargon, so the solution to this is

called a weak solution, this is a weak formulation and a weak solution, okay fine.

Let us get back, this is just as I said, this is just an aside let us just get back to calculus of

variations, what if it were in multiple dimension, you should have suspected when I went to

the notation use of x that is I am going to talk about multiple dimensions right, obviously, so

what if it is multiple dimension so it is a 2D, so the independent variables are x and y, okay.
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So J of U over some domain D right, so this is something of that form and I am not going to

derive the Euler Lagrange equation, I am going to just squint at the earlier one and write it

out, right, so it is likely to be, okay, is that fine, now you know why I went to the subscript

formulation,  the form, notation,  so if you use this what happens to this, this becomes 2D

Laplace equation, right.



So you have a variational representation of 2D Laplace equation and this will correspond to,

this will give you Laplace equation directly, this is a variational form, so when we are solving

Laplace equation I basically said that look solving ax = b for Laplace equation was the same

as  minimizing  something.  Solving  the  Laplace  equation,  the  differential  equation  is

equivalent to minimizing that, this is the continuous equivalent.

I showed you a discrete equivalent earlier, discrete version earlier, right, saying that if a was

symmetric that Q of x = 1/2 x transpose Ax, you remember this, x transpose b. Minimizing

this Q of x right, was the same as solving the system of equations Ax = b where A was

symmetric, this is the analog okay, solving this is the same as minimizing that, am I making

sense, okay, we are sort of tied the two together.

So if you were to discretize this or you have to discretize that you would suspect that this is

discretization that will get you the same in both of them right which is what we did in one

dimension, am I making sense, is that clear? So there are times when doing the variational

form is easier than doing the differential form, you may look at Laplace equation, say wait a

minute I say I am giving you Laplace equation as an example.

You  could  look  at  it  and  say  that  it  is  just  averaging  of  the  4  why  should  I  go  to  an

minimization problem, minimization problem looks more difficult right, but that is because it

is Laplace equation, okay, so what if it were a different problem so I will just write out the

equation for a different problem just slightly messier problem.

(Refer Slide Time: 43:26)



Consider this J of u, you know what this integral is? Surface area, right, if u is the surface,

this is the surface area, right, this was the length of the curve, this is a surface area okay, so if

you were to minimize this you will get a minimal surface so this is the typical soap bubble

right, you take a wire frame of some kind stick it into soap water, take it out, a film forms on

it, you want to know what is the function and because the thickness is almost 0.

You can equivalently tie the energy in that system to the area and so minimizing the areas like

minimizing the total energy, right, you can actually tie the two together and it turns out that

this minimal surface problem as it is called is a very classical problem, lot of people have

studied it. The equivalent differential equation if you want so just to encourage you to think

of variational problems occasionally is this.

If you are wondering why do I remember this, because it has a nice pattern to it, right. That is

the messy differential equation that is not Laplace equation you understand what I am saying,

this is the pay into discretize this works right, this I would rather really discretize this and

throw it on some kind of an optimization problem, there are still issue, right there are still

issues with respect to this.

We do not really have the time to discuss it, but I would rather discretize this rather than set

up the discrete equations that come from this, am I making sense is that okay, so I would

rather write a function that evaluates this and then say hang an optimization routine on top of

it and let it go through the optimization process blindly as though it is a black box and come

up with a solution rather than actually working out the differential equation that comes out.



The nonlinear algebraic equation that you get, n-dimensional nonlinear algebraic equation,

that is a mess and in order to solve it anyway you will have to do some kind of Newton

method or whatever it is and then you are committed in this optimization context to a steepest

descent or something of that sort, right, instead of going there go directly to the optimization

form, it is easier to formulate right.

So the variational techniques have a place, so far Laplace equation problems that you have

never seen before in this class, how does it fit with respect to solving the Euler equation or

Navier-Stokes or whatever, how do you do this with respect to these schemes, well, one is

you could follow this path and it could be done in various ways, one possible way would be

that,  you take R which is the residue, R is the residue of whatever equation that you are

solving.

See right now I am talking about it in a very general context, R is the residue, so you can take

R and you bases functions and try to set that equal to 0, right, you could go through that

process, at generic situation, am I making sense. R dot B will give you the components that

go with this, the other possibility is that you could look at what is this it looks like the norm

of R and you could try to minimize this or set it equal to 0.

Right you minimize this, so now I have a functional representation, you minimize this, if this

R  is  minimized  okay,  you  have  a  variational  formulation,  this  could  be  Navier-Stokes

equation or it  could be Euler  equation,  it  could be any form, of course there are  special

techniques the whole class of special techniques if you are talking about up winding and so

on, right, I do not want to go there.

There are special  things  that  you have to do if  you want to  get  into this  business of up

winding, but if you leave that out for further research for you guys to do later, so what you

could basically do is without even writing the differential equation so if you have a generic

differential equation and R is the residue you could write the expression for R, take R dot R

and minimize it.

Am I making sense and within round of error you should be able to get the minimize it to,

you should be able to find the minimum, you actually wanted to be 0 because it is a residue,



right, you actually wanted to be 0 and this could be minimized, so we have generating a

variational problem is relatively easy, if you want to generate a variational problem directly

from let us go back to Uxx = P.
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If you want to generate a variational problem directly from the differential equation one way

to do it is, do it this way, but what if you wanted to act as though this is the Euler Lagrange

equation or some other equation of some variational form, what is that variational form? How

do you find that? I have picked something easy here, right. What I have picked basically is if

you take Ux squared by 2, okay.

If  you  take  something  like  this  it  works,  I  picked  something  easy, you  can  ask  me  the

question how did you get this? well I guessed it just like all other integration. I thought about

it, I said I want a dou f, dou u to be P, so it should be P times U, okay right, fine. The only

derivative for which there is a headache it is the problem is the first derivative. So the first

derivative, if you have a first derivative here that is the problem.

As always those first derivatives are headache okay, right so I think that about covers what I

want to say about variational techniques that indexing thing is something that we need to,

alright, we can just checkout, I will see whether Monday I will come back with the correction

or I will just leave it for you guys to fix it, is that fine, okay thank you.


