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Okay, so  we have  been  looking  so  far  at  the  last  class  at  least,  we have  looked  at  some

acceleration techniques;  we have looked at  preconditioning the unsteady term for 1D Euler

equations okay. There are some more acceleration techniques that we need to look at, some of

them are relatively straightforward ideas that come from things that we have seen so far, ideas

that we have talked, discussed so far.

Okay, I will just use that to introduce at least 2 other techniques, fine and maybe I will suggest a

problem that you can try out for yourself for one dimensional flow, maybe right out the quasi

1D equations, I just write it okay, I am not going to derive them, you can derive them, you

already seen them derived in  gas dynamics  but  still  you can derive  them and then if  time

permits, we will get into a larger class right.

A larger algorithm, which will take me multiple classes to at least 2 classes or 3 classes, right to

talk about acceleration schemes of other need of another nature okay, fine okay. So, first let us

look at; we will just go back; I will write the equation in delta form.
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And I will write the equation in delta form simply because always, I forget the delta T there, I

write the equation in delta form simply because I know that if this term were not there it will

become the explicit scheme okay, I write the equation in delta form and I am going to use this

to just mention to point out 2 ways by which we can accelerate convergence okay and the

reason why I am talking about this is I want you to get a flavour of the kinds of things that you

should look for when you are writing your code, right.

You say, yes last class, I said I want the wall clock time, the time that it takes for the answer to

come back to  be as  quick  as  possible,  as  short  as  possible,  the  duration to  be as  short  as

possible. So, towards that there may be effort that you make, various kinds of things that you

do, when I write this delta form simply because we use this argument saying that when I get to

the solution, R the residue will be 0, okay.

So, I will repeat that argument, so as a consequence as long as this is not similar, delta Q will be

0 okay and therefore it really does not matter, when I get to convergence, if I am interested only

in the steady state, no longer talking about the transient, if I am interested only in the steady

state, then I can pick this matrix in some form, so that it is easy to compute, is that fine, right.

And we have used this argument before we came up with the LU approximate factorization,

there are  other schemes that  we have talked about,  where you can actually  replace this  by

something that is going to get you to the solution faster, let me just put it that way, okay, is that

fine. Now, R goes to 0, delta t times R is 0, okay, so one obvious thing that you can do right and

think back to the demo, what did I do in the demo?

In the demo, I took; I set delta t by; I pick delta t/ delta x, I did not pick the CFL, my delta x is

not changing therefore, my delta t is not changing okay, already when I do this you know that if

my delta x the intervals are not equal in size, you already know that the delta t will also change

from point to point but I have picked a fixed delta t, I did not pick a CFL but you could pick a

CFL, you could pick a sigma value okay, could pick a sigma value.

So, that it will turn out that the delta t is not same from point to point in fact, you can ask

yourself the question, so this is at some point, this is at some, this is of course the system of

equations but at some point for any point, if you were to take a delta t, right so if you had, let us



just pick a bunch of grid points here, so you could pick a delta t here, which is different from

the delta t at the adjacent.

So, you could have a delta tp and the delta t p +1, is that fine, so the time can be changing from

point to point, this is called local time stepping. So, what could be the potential issues, what

could be the potential problems? Well, we do not know if it converges to the right solution,

right, again I would expect that anybody who studied mathematics uniform convergence, you

have a problem you already know that we are not; we do not have uniform convergence.

And we are starting to do funny things like this, we are saying well, if there is a spot where the

solution converges more very quickly to a steady state solution, let it go, why should it be held

up by something that is going at a small rate, am I making sense, anywhere where I can take

large time steps, let me take large time steps where I am constrained to take small time steps, I

will take small time steps at those points, is that fine.

So, basically what we are doing is by doing local time stepping, we are saying geographically

point to point in the domain my solution is; so, it is no longer if I say first time solution at first

time step, solution at second time step, solution at third time step, are not really a solution? It is

not; I mean, I cannot even imagine it as a candidate solution, it is basically well some state

vector cube at the first time step whatever that means, right.

But I say first time step, I do not say at delta t, my language is already changed, I say first time

step, I do not say at delta t, it is not a delta t, 2 delta t, 3 delta t because I am not anyway

bothered in the transient, so I do not care and if it gets to a steady state solution that I want

faster my experience has been that you do get to the steady state solution faster, so if I am

looking for the steady state solution, I am likely to do local time stepping right.

In my experience you get there faster, so I am going to do local time step, am I making sense

okay, so this is one possibility, so what I did in the demo, now say once you will introduce

language, we have to make sure that the vocabulary is complete, so this is local time stepping

what I did in the demo is called global time stepping, right just as a contrast, so global time

stepping.



You have to  be careful  because  if  you switch from one to  the  other  or  you are  making a

presentation where both are there, you have clarity, this is local time stepping, this is global

times, right okay, is that fine and obviously, there are things that you can do in between, there

can be places where you say get to the steady states quickly, there may be places where you are

interested in transient, I do not know, right.

There could be combinations that you could use, it could be a script where you use, global time

stepping and the script where you use local times, all sorts of possibilities, is that fine okay that

is one possibility. The other thing, remember I want to get only 2; I only want to get to the

steady state solution, so we talked about fancy things that we could do to this, the approximate

factorization and so on but there are simpler things that you can do, okay.

How many terms is  the flux Jacobian has? Flux Jacobian is  A, it  is a 3/3 matrix,  you can

imagine  if  the  problem was  in  3  dimensions,  if  you  are  solving  the  3  dimensional  Euler

equations, it is a 5/5 system, the expressions are; I mean they are okay but they are not that

great right, pretty expensive to calculate, so then I ask the question, do I need to calculate it at

every time step?

I only care for the steady state, do I really have to recalculate this A at every time step, would

really hurt if I kept at constant for few time steps, am I making sense, okay. So, I can take the

attitude I am only looking for the steady state, it is pretty close to the original system, I will just

keep A constant and this can clearly be done, this can be clearly done whether you are doing LU

approximate factorization, whether you are doing local time stepping.

They can all be done together, it is not the one or the other, so one of the things that you can do

of course, remember that the first 3 elements are 0, 1, 0, I mean there it does not cost you

anything, right, so I am not saying it is 9 but still in the case of a 3 dimensional flow, I make the

sale, right I am telling you that I am pushing the 3 dimensional; 3 dimensional flow you will

have 3 flux Jacobians, each of them are 5 / 5 matrices.

At every time step, at every grid point you have to calculate 25 * 3, right, 75 minimum, am I

making sense, so the question is do, I need to do it at every time step, you do not, you can keep

A constant okay, so you can keep A constant, then the issue is; for how long can you keep it



constant, we have typically found well, it depends on the flow conditions, you know about 10

time steps, it depends on how rapid the transients are.

But you are looking for the steady state solution, so in 3 dimensional flow, I am not really

talking about 1 dimensional flow, you can try it out for 1 dimensional flow and see if it makes

the difference that you keep it constant for about 10 time steps, 15 time steps that the savings

are quite large, okay, the savings are quite large. So, you could keep A constant, remember that

means the A is not varying in time, A still varies in space, okay.

A is not varying in time, A held constant, where this N is something that you determined, is that

fine and very obviously, this N may be small, if you now see a little wrinkled on that very

obviously then maybe small when you are starting off but as you get closer and closer to the

solution, Q is not changing much, so A is not changing much, right. So, it can actually be kept

constant for a longer and longer period, right. 

And as Q converges, A will converge, is that fine okay, so and remember all of these can be

done, whether you do a LU approximate factorization, all of these can be done simultaneously

okay. So, I think see, this is the deal, the argument started with just the simple idea R goes to 0,

I have my solution and my objective is to drive our R to 0, now we are just using that one fact,

right.

And then trying to see what is the other degrees of freedom that we have, the minute I say oh,

this can be anything, the minute I say this can be anything, see that is a degree of freedom, then

you can say it can be an optimal thing, then you can start hunting for optimal okay, is that fine,

is that fine okay. This is as far as I want to go with respect to obviously these arguments go on

if you want to do a transient, dual time stepping and all.

You know all of these arguments take place go on to that only thing is in dual time stepping

case, the delta tau will change from point to point okay, so all of these arguments whatever we

have done here will go on to that case also. Again as I said, you could also do preconditioning

the unsteady term, right it does not; you can do local time stepping, the whole host; you can use

a whole host of these tools, right to make your code run faster.



To get the solution, I would not say to make your code run faster, so that is a very straight; to

get your solution back quickly okay, which is your object to get that solution back quickly, is

that fine okay, right. So, what I want you to take from here is not just this but that the process

the logic that I gave you, okay that is what that is the important thing that I want you to get out

of this, the process that I want okay that is the important thing.

So, I preserve the R and then I do not really care about the others as much and I use that to get

my  speed  up,  fine  okay.  Now, what  I  will  do  is;  I  have  talked  about  a  whole  bunch  of

mechanisms by which we can solve one dimensional flow, let me suggest a test case for you, I

will just; in case on when I did the demo, I did not really point out the details of everything that

I was running.
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Let me give you the specific details of what I was running, so that you can try it out yourself.

So, the length of the pipe that I used, you can take it unit length if you want to start with, so it

can be 1 meter start with, ask yourself the question whether the dimensions matter under what

circumstances do the dimensions matter, okay, it is a critical question that and they help you ask

this question, I am going to post an auxiliary problem.

Because we prescribed P0 and T0 there, do you remember the conditions that I prescribed at the

stagnation condition; stagnation point, P0 was 101325 Pascal’s, T0 is 300 Kelvin, you can start

this off this way, here of course we have 84,000 was what I had picked Pascal's and to set the

initial conditions, so I am not going to write it here as a boundary condition, remember the



problem that we picked the valve, you decide in the valve was a deep, the valve that is open

does at the inlet.

So, this condition I gave it as 300 Kelvin, right so the condition in here is whatever is here, so

the initial condition, so this is initial condition T equals 0, 300 Kelvin Pa and then you can

decide how difficult or how easy a problem you want to start with, you can take u equals 0

indicating that the flow is stationary, so in fact when you open this suddenly, what you get is

not; you will get a shock.

And you have to apply to find to actually calculate the propagation speed, you have to use the; I

think, you know condition that we are talking about the other day, likely get a shock okay, so

there are various things that you can do, you could set this, you can raise, I have taken a ratio of

about 1.2, right, if you can keep the ratio at about that value and raise the whole datum up, so

this could be at one atmosphere, this could be at 2 atmospheres, see what happens, right.

This is at 300 Kelvin, do you think it will make a difference, if I change it to 500 Kelvin, right,

this is a problem more difficult to solve, if it is a 1000 Kelvin, ignore real gas effects, I am not

telling you to take into account real gas effects, there are once you start getting to 1000 Kelvin,

your CP value changes, CV value, gamma changes all of these things change, so we do not

want to go there, you can still keep it at Euler equations.

But the question is; is there a change; is it more difficult to solve, is it easier to solve, okay

because I have already pointed out why did I pick this ratio 1.2 because this gives me an answer

that is close to 0.5, Mach number 0.5, so this gives me an answer that is close to Mach number

of the flow, it is close to 0.5, so that my eigenvalues are all in a nearby range, okay the problem

is well behaved, so this is the other thing.

So, this process that I have gone through to set up the problem, it is important, that is the reason

why I am explaining this to you, so you may not; you may solve some other problem at a later

date,  you  may  be  working  on  some  right,  research  problem  and  an  industrial  problem,

somebody gives you something, you are doing the analysis, you want to develop code to work

on that problem, you want to test your code while you are going through the developmental

process pick an easy problem.



Pick a problem to which you know the solution, right pick a problem to which you know the

solution, you anticipate the nature of the solution what are the difficulties that are there, so you

think about it a little, then say okay, this is going to give me a problem, let me pick something

that is near Mach 0.5, okay right, we could have done supersonic flow also, I could have done

Mach 2.

So, you have to ask the question, why I did not do Mach 2, why did he not do Mach 2, why did

he do the same Mach 0.5, okay, is that fine, so there are; then you can fiddle around with this

just to figure out how the code behaves and see what happens, am I making sense for various

values  of;  normally,  your  experience,  my  suggestion  you  may  do  this  everything  is  in

dimensional form.

Normally,  what  you  should  do  is;  you  should  non-dimensionalize  the  equation  okay,  so

normally,  whether  you do it  now, whether  you implement  it  this  way and  then  later  non-

dimensionalize the equations is up to, so use the non-dimensional form of the equations okay, in

your fluid mechanics you would have studied non-dimensionalization and why you should look

at the non-dimensional form of the equation.

My suggestion is to look at the non-dimensional form of the equations but we can come back

here, you can ask yourself the question if I take 1 meter or if I take 0.1 meters, does it make a

difference, when does it make a difference, what is the, when is it the same, when is it different

okay? We are dealing with Euler equations and that can create some element of confusion, fine,

once you have this, this is a relatively see, I have shown you all the features that you can get

right in the demo not much that you can get beyond that, right.

You can get into trouble you can try out various things combinations that I have told you and

you can get into trouble, really in gas dynamics this is not what we study right, you do only 1D

equations, you set up the 1D equations but the interesting stuff when you go to, comes when

you go to quasi 1D, 2 dimensions is tough, you have got quasi 1D, how you go to 2 dimensions

steady state, right okay.
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Quasi 1D steady state, so I am going to draw, I will draw half which, shall I draw the other half

also something like that, this is a typical nozzle that you are used to dealing with, how did quasi

1D flow go? So,  you have  some area  variation,  so the  area  variation,  this  could  be  the  x

direction, the area variation could be some s of x; s as a function of x and the corresponding

governing equations; the equations corresponding governing equations corresponding to this

would be; I will write it out, you can verify it right.

You can go back and check whether, so dou / dou t of Q times s, just make sure I am using the

same s; + dou/y dou x of E times s equals; so the right hand side is not 0, okay simply because I

have taken this s inside the brackets, then I get an extra term. On the right hand side, I can place

an H, the H is 0, p ds/ dx, 0, you can do a simple sanity check right now, I would suggest that

you make sure that you are able to remember what I told you earlier, right.

Make sure you are able to derive the equations, I may have made a mistake but when someone

is writing this you should be sitting there doing a simple sanity check, so when s is a constant

that goes to 0 and it can be factored out, you get back your 1D, so in that sense, yes it is a

superset  right  but  as  to  whether  the  actual  terms,  individual  terms  are  okay right,  there  is

something that you have to look at.

So, this is not really that much of a change from your 1 dimensional; from a 1 dimensional

solver right, it is really not that much of a change but now interesting things can happen. the

flow field is more interesting, more interesting things can happen, the flow field is much more



interesting, so you could choose again prescribe P0 and T0 here and prescribe a P ambient here

and try out different things, try out different combinations, right.

You could have subsonic, subsonic throat choked, throat not choked, right, so I would start with

subsonic subsonic throat not choked that is where I would start and then slowly build it up to

where it  is  choked,  are  you able  to  get  the  supersonic  flow right,  are  you able  to  get  the

supersonic branch, this is all for a small s and I said for any given s of x, then you can try if I

change the s of x, right, fine.

If you want to keep it simple remember what I said always try to keep it simple, so I would not

even  do  this  first,  what  would  you  do  first,  I  would  just  use  a;  I  would  just  do  a  small

converging duct, right, it is the constant area duct I would actually do a small converging duct,

so the s of x is known, s of x is simple right, so s of x is a linearly decreasing function, s of x is

known, prescribe the P0 and T0 here, prescribe the P ambient here.

In fact, you can take the same values that are there, see what happens, okay, is it fine right, you

can then do; I would most probably do then a diverging section and then maybe a CD nozzle at

that time right, always good to go through a hierarchy of problems, instead of jumping into the

big problem directly, is that fine okay, are there any questions? Okay, I think this is as I said you

spent quite a bit of time in gas dynamics on quasi 1D flow.

So, I am not going to go through all the assumptions right, you would expect that if s was

varying very rapidly, you would expect that there would be issues, there should be problems

right, so because it is quasi 1 dimensional, the assumption is the area variations are very rapid

right otherwise, the other 2 dimensional 3 dimensional effects will come to play okay, fine. So,

I will now, what I do is; I go back to that equation.

I am going to rewrite this, I get back to; I am going to get back to accelerating convergence and

there is a whole class of schemes that we are going to look at okay. If I look at this this looks

like some matrix multiplying some vector equals right hand side residue instead of using this to

start with I am going to start; I will start with Laplace's equation okay, let us start with Laplace's

equation.
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So, I am going to start with Laplace equation as an example and we will try to reason out, I am

going to follow a certain path but I want to recollect some of the things that I have done in the

previous classes; the previous demos more important and conclusions that we have drawn the

demos which are going to; which I am going to use to rationalize or base right, this acceleration

scheme, fine.

So, first think back to representing functions using hat functions, right we tried representing sin

x, sin and x and we have drew the following conclusions, so the conclusions were there is a

highest frequency that can be represented on a given grid, so there is a; and remember we are

always talking about a uniform grid for these discussions are always talking about uniform grid,

I do not want to even get to non-uniform grid right now.

There is a highest frequency that can be represented on a given grid, right, what else, is there

anything else? So a variation of that I turned the statement around, so whether a given wave

number;  highest  frequency  wave  number  normally,  when  we  say  frequency  when  you are

talking about time right okay, wave numbers okay. I turned it around for a given wave number

whether it is a high wave number or low wave number.

High frequency or low frequency depends on the grid on which you are representing, taking the

same thing and right which is also important for you, so whether a given wave number is high

or low depends on the underlying grid, I want both this right, though there are variations of

each other, I want both of these. What else do we know? Now, that I have defined what is high

and low, we go to a different demo that we did, you go to a different demo that we did.
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And we basically said that if you have these, if the scheme is dissipative in some sense, it seems

to show that high frequency is Dk faster than low frequencies fine. So, certain schemes; high

wave number, I am saying frequencies again, with the quote on high, so now I have mentioned,

I have told you what are high and low that was the reason why I needed that okay. So, high is

with respect to the grid, low is with respect to the grid.

So,  the  grid  does  now  become  going  to  become  important,  the  underlying  grid  is  very

important, so if you say high wave numbers Dk fast the low wave numbers which means that

by changing the grid, it is possible for me to change whether a frequency is high or low that is

the clue okay that is the clue, so we come up with this idea that we will use multiple grids,

scheme is called the multi grid scheme.

It is not a scheme to solve a problem; it is a scheme to accelerate a solution technique, okay

multi grid scheme. The idea is to use multiple grids right, so will I just take; if I think about one

dimensional Laplace’s equation which is look something like that right, which you basically

know on 3 grid points, I am not even going to bother to derive it, you already know, these are p,

p + 1, p – 1.

Then you know that given those 2, right you already know that up at iteration level n + 1 or q +

1 is the average of the adjacent points, so just a quick example as to how this happens? So, if I

have; if this is what I am plotting now is the; what I am plotting now is an error okay, what I am



plotting now is an error, if I have; so I want r, if the end points are 0, then the solution should go

to 0 either way right.

If  I  have  my  initial  guess  as  something  that  is  this  way,  we  have  seen  this,  I  am  only

reproducing what we did in the demo but I want to do it in a very specific fashion, so if you

have a grid point at this trough, you have a grid point at this peak, you have a grid point at this

trough and if these correspond to p - 1 and p + 1, you can see looking at these 3 that the average

will give me something that is going to go that way.

That is basically what the averaging is going to do, is that fine, everyone, so these 3 grid points

are indeed effective and eliminating that; little high frequency and if you iterate once or twice

that high frequency will go away and what you will be left with; the high frequency will go

away and what will you be left with; you will be left with the low frequency. Let us look at

those 3 grid points again.
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That is p, p – 1, p +1 and if you look at it, this, this and this, the average is very close; the

changes that you are going to get with this grid are going to be very small okay. On the other

hand, if instead of that you had a grid point here, a grid point here and a grid point there, now

you can see that if you take the average the change is much larger, right or even go make it even

more, even make it even more coarser, if you had a grid point here a grid point here and the grid

point there.



You understand that is where the change is extremely drastic but the tragedy is that though the

change is drastic, the grid on which that you are able to do that is a very coarse grid right, so

somehow we have to come up with a mechanism by which we use, we get the solution on the

fine grid but we use the coarse grids to eliminate the error; the low frequency error, the error

that is low frequency on the fine grid, you want to use a coarse grid to eliminate it.

The error which has low frequency on the fine grid, you want to use a coarse grid on which that

error will be a high frequency, we want to use that coarse grid to eliminate that error, is that fine

okay that is the motivation that is what we are trying to do, this is called a multi grid scheme.

So, we will see how we would do it, okay, so back here Laplace's equation; Laplace's equation

we know if you were to discretize Laplace's equation, get a similar set up.
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I am not going to deal with this right, so I know A is a flux Jacobians but you humour me and

allow A to be the coefficient matrix, so Laplace’s equation, this is for Laplace's equation, this is

not the flux Jacobians, right; A times phi of H equals f of h, I will put h there, where h is the; h

represents the grid size. See I have already write the thing a little differently because I am

saying that I am going to use multiple grids.

I am aware that I am going to use multiple grids right, so now I am being very careful, right up

front I am going to be careful, I am going to say, wait a minute, if I am going to use multiple

grids, I am liable to get confused, so let me stick h is up there, so that I get the; I can keep track

of where I am okay, go back; if you go back to the part that we did Laplace's equation, you will

see that we can actually write it this way.



In 1D, it would be; this would be a tri diagonal matrix, in 2D, it is going to be a matrix whose

bandwidth is much much larger okay, you have done this before, you can write it in this form,

fine. The original equation is nabla squared phi equals 0, okay, if you get this exactly, then phi –

phi h will be a representation error, fine right, so we solve this in some fashion; we can solve

this in some fashion.

You could guess a phi; you could guess a capital phi, right, you could get some; you can guess a

phi, a candidate solution for this, right am i making sense, phi H is what you are seeking, if you

have the phi H, you have the representation, you have the answer, you have the value at the

nodes okay, you do not have this, you only have a representation of that on the computer. So, if

you have this you have the solution.

If you guess something which has an error in it, I will make it capital phi, you could guess that

okay and in order to get to where I want to go, since I have already known where I am headed

right, I am going to do this in steps, I am going to define an Eh, which is an error, which is the

phi h, which I seek, - capital phi h, which I have guessed, is that fine, everyone, okay right. I

will also define the residue rh as fh – Ah phi h, is that fine, okay.
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So, what am I going to do? I am going to multiply this by; you need to multiply that by Ah, so I

will get Ah eh equals Ah phi h – Ah phi h, I have not done any linearization and going from

really the original equations are linear but it helps that the equation; the system of equations is



linear right, so I am using that factor, it distributes over and this Ah fh is oh, okay, I have a

small error here.

For a minute, I was staring at it saying wait a minute, there is something wrong, if I have the

solution, the residue had to the 0, right; if I have the solution, the residue has to be 0, for a

minute, I was staring at this thing, what is wrong there is something wrong, okay, fine. So, what

does this give me? This gives me fh - that which is rh, so you get Ah, eh equals rh, okay, this

equation  incidentally  is  called  the  correction  equation;  equation  is  called  the  correction

equation.

And in fact,  you can  use  this  equation  to  solve  the problem instead  the  original  equation;

instead of using; instead of this, instead of using this you can actually use this to solve the

problem, am I making sense. How would you do that? You would guess a phi h; guess a capital

phi h, compute rh, solve for eh some iterative fashion maybe, you do not have to solve it; solve

it right, you do not have to use a direct method but get an estimate for this.

So,  find  an  eh  from;  then  update  your  phi  h  new, then  you  can  iterate,  you  can  do  this

iteratively, am I making sense, so you could; in theory you could use this equation, it is a little

contrived; it looks a little contrived, right but I just want to show it is equivalent to solving the

original equation, solving for this correction is equivalent to solving the original equation, is

that fine everyone okay.

Now, we go one step further, so I can iterate, I can use either Gauss Seidel or something of that

sort you can imagine that I do this, I find this, I do one sweep of Gauss Seidel, I sweep through

once with Gauss Seidel, calculate the new one, go back here, find the new r, one sweep of

Gauss Seidel and you keep on repeating that process, okay. So, you can set up an iterative

scheme right.

You can use either Gauss Jacobi iteration or no Seidel or something of that sort, you can set up

an  iterative  scheme  fine.  So,  you  are  going  through  these  iterations;  going  through  these

iterations, you do 10 iterations, it seems you are converging very nicely, all the high frequencies

are gone and now you are stuck with the low frequency terms right, you are taking 101/ 101

grid and you are iterating away, right and it is not going.



Because the low frequency take turns take a long time, so the question is; would not it be nice if

I could solve this problem now on a coarser grid, so that that low frequency would turn out to

be a high frequency on the new grid, okay. So, we do a small wrinkle, what we do is; we take

the same thing here, we take the same thing there but we add a wrinkle.

(Refer Slide Time: 43:11)

So, we say, we have the phi h, find the rh, okay, ah, let me write the; so iterate Ah phi h equals

fh, few times, so to indicate that I am iterating it a few times, I will draw an arrow this way and

say iterate or many times you want to do it, okay iterated some n times, you already have a

disposable parameter, it will be 5 times, 10 times you figure out what is good right, iterate n

times.

Calculate rh equals fh - Ah phi h, so this is our current estimate after n iterations, what comes

out of this is capital phi h that is what comes out of that. Now, in some fashion transfer rh to

r2h, I do not want to call it r2h, so I; r2h, you need I have to does an extra step, be careful with

this part I am going to come back and erase it and make some changes, transfer from r to r2h

okay; rh to r2h, you understand what I mean.

So, if you say wait a minute, how do I transfer or how does this magic occur? We will see it in

one-dimension right,  so these are  the grid points  that  I  have one dimension,  I  will  keep it

coarse, so that we are able to and let me get some coloured chalk, so if I have a value here, I

have a value at these points, so this is h, 2h would be this okay, so to find the value here; to find

the value at this point to transfer.



The simplest way to do is just throw that away, that is the simplest way to do it, just ignore

these points, just throw those 2 away, take the one that is there, it is a best way to do it, you do

not like it though as long so much and all those adjacent points should ideally throw it away

this is what you feel, you feel regret, then do a little work right, take a weighted average, one of

this, one of that, 2 of those divided by 4, right you understand what I am saying.

So, 2 phi p, phi p – 1, phi p + 1/ 4, right and these are all capital phi’s okay, this is phi, of course

it should be r, I should actually be transferring r, right, it is not really phi, it should be r, let me

correct that; 2rp, rp – 1, rp + 1/ 4, all of these at h, this is okay, so now you have a way by

which you can get r at 2h, am I making sense at the point p, fine. Transfer from rh to r2h back

here, iterate this, n times get a candidate phi, find the residue, transfer the residue, okay.
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Then what? On that coarse grid, solve A2h e2h equals r2h, means solve, I mean iterate a few

times, iterate to get eh, okay, transfer e2h to eh that should not be difficult, is not it, that should

not  be;  you can  interpolate  using  the  same example,  if  you want  the  value  here,  you can

interpolate right,  you can interpolate,  you always get the value in between. Then repeat the

correction, update.

Transfer it back phi h new equals phi h + eh that you have transferred, okay in fact, instead of

what you can do is; you can do this and just to be sure that you have everything on the h grid

fine, before you say I have the solution, you can iterate Ah phi h equals fh, a few more times



just to make sure you have a solution on that fine good, fine, everybody is okay, the transfer to a

coarse grid and transferred back.

Now, comes the little trick that we are going to do okay, now comes the little gimmick that we

are going to play, come back here, you are here, you have done the transfer okay, you have done

the transfer, having done the transfer, come back here and I am starting to iterate, right, you are

working on a 50 / 50 grid, you are doing iterations, you do 10 iterations all the high frequency

errors on that 50/ 50 grid disappear.

But it  still  does not converge because on that grid there are low frequency errors that grid

cannot converge that rapidly that though there are low frequency errors on that grid that do not

go away, so you think, if only I could run them on 25/ 25 grid, right and you can, if you just

change the rotation a little okay, so if you guys do not mind, we will go back here, changes the

notation a little, you change this to f to h, transfer rh, we will call it change it to f2h.
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If you change it to f2h what happens to this equation, that says Ah eh equals f2 h that looks very

suspiciously like the original equation which we are trying to solve, which is Ah phi h equals

f2h;  fh,  okay. So, what  you need to do is;  you iterate  this,  another  n times or m times or

whatever it is, n1 times or n2 times whatever to get this and do not transfer it back, instead

calculate r2h, now you understand why I wanted to call this f2 h.

Because I propose to define a residue at this level, calculate r2h, which is f 2h – A2h e2h,

transfer r2h to r4h okay, r4h, you could in theory transfer it to any size that you wanted but it is



a little easier if you keep them; if you keep the relationship transfer r2h to r4h, iterate A4h e4h

equals; oops little mistake; transfer r2h to f4h, cannot fall into; now first time it is okay, second

time we cannot make that mistake.

Now, we know the game, r2h has to go to a f4h, iterate this, how many levels do we want to go

well,  that depends on where you started,  if  you started with 1023 grids or something huge

number, huge size; 1000 / 1000 grids, right and clearly there is some relationship to powers of

2, we have to look at what is that relationship, okay, I let you figure that out, so then you can

keep on having the grid, right till you get to a point where you are happy with what you have;

the convergence rate that you have, fine, okay.

Oops, okay that is fine, what I will do is; we will get back to this. We will talk about may be a

little of this multi grid thing in the next class okay, thank you.


