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So, last class we started looking at the linear one dimensional first order wave equation right.

That is where we left of, we were looking at a problem.

(Refer Slide Time: 00:21)

Let me just write the equation dou u dou t + a dou u dou x = 0 a is > 0, okay and we saw we

call this we also call this the advection equation. So, it was basically it capture the idea of this

pure propagation. The propagation speed is a, right and we are looking at the problem a sort

of started talking about the boundary conditions but I did not quite state what the problem

was, so let me just state the problem, okay.

So, we could have say a pipe of length l at the this of course is the x direction. At the left

hand side there is a valve and maybe there is hot water to the left of that, okay or there is hot

air to the left of that whatever, fine. One dimensional problem. This pipe may have gone

forever but we are only interested in the length of pipe or length l, okay. The pipe could have

gone quite some distance. So, the idea is that t = 0 we are going to open the valve, okay right.

So, at t =0, so what are the boundary conditions that we have and the initial conditions. So, at

t = 0 we have an initial condition at t = 0 the u throughout this pipe has a certain value right?



It can move it, that you understand. So, we can move our reference temperature or whatever

it is property that you are talking about, so at t = 0 u (x,0) that is x, t is 0, okay. So, we are

interested only in this length, keep that in mind.

And for all t at x = 0, right for all time t > 0 like we do not know how long the water is being

get hot, so we do not go there, right. So, for t > 0 > or = 0 if you want. That x = 0 u (0, t) = we

always scale the problem = 1, is that fine? So, this is the simple problem that we are talking

about.
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If you were to xt plane, so that is the length l. We have prescribed conditions from 0 to l on

the x axis and we have prescribed conditions for all positive t, that is basically what we have

done, okay, is that fine and we know that our characteristics go out in this direction. So, the

characteristics that goes out here, I do not care for, right it is going out. So, we know these

characteristics north in this direction.

So, this is the orientation of the characteristics, okay, is that fine, everyone? So, whatever is

the value here on the axis is the value that is going to be propagated along the characteristics

at the speed a, fine. So, yesterday I call those points x not, I will call it psi today for my own

reasons. So, what happens to this function now, so the initial function? If I plot the function u

versus x for the same length l, right it is a rather simple function.

Just to the left of it which we are not interested in apparently the function value was 1, right

and then it drops to 0 and there is indeed a discontinuity at that point, okay. And I do not



actually care the fact that there is a discontinuity. If it bothers you, you can choose some

other, we can choose something else, right? But let us start to this, let just start with this.

So, this valve is open because this is the problem we have been looking at so far, the valve is

open and what you would expect is the water propagates left to right. So, whatever value you

have here is going to propagate out, whatever value you have here I have not drawn the

characteristic going from that step. You have a step there. That step is going to move along

that characteristic, you are going to propagate along that characteristic, is that fine?

So, end time as you go along this step is going to come out. So, at some time t this step is

going to propagate out. So, what you would expect is this were an animation you would

expect this step is going to travel right, left to right, is that fine? right and if you think about it

you have a tap you open the, right you open the valve and hot water is going to travel and you

would expect something like this to happen, okay.

So, pure propagation that  is  all  it  picks  up.  No diffusion nothing else,  no other  physical

phenomenon,  pure  propagation.  There  is  no  decay  in  the  size  of  the  step  there  is  no

smoothening out of the step nothing, okay. It is just going to propagate left to right, is that

fine?

Okay, so this property is important, so if you had instead of your initial condition instead of

being a step some other function you can imagine now that you can choose other functions.

So, you can choose a function the initial condition for example to be to go off from some

value, right go down, some value. It can be anything, I mean you can just pick right, you can

pick any initial  condition that you want and that condition will be propagated it will just

basically flow out of the pipe.

What I am trying to say is that if in your pipe whatever it is that you have, right there is a

temperature distribution that water is going to flow out, right. So, if turns out that the pipe

because  it  is  being  sitting  there  as  warmer,  there  is  a  region where  it  got  warm due to

conduction through the valve or whatever then when you open the valve it is all going to flow

out, okay. So, this function is just going to propagate left to right, fine.



So, you can try out a few different functions the other thing that you can do is at you can try

this out for t >= 0 you can replace the function at x = 0. You can replace the function 0, t

instead of being constant which is what I have done so far pick a function see what happens.

So, you can take that to be say cos t or you can take this along with cos t or sin t, right or try

another one.

So, this is one function try a different function, right 0, t = cosine 2t. Try various functions

and  see  what  happens,  okay. Try  various  functions,  these  are  varying  in  time  see  what

happens, is that fine? Okay. Let us get back to this picture, so this characteristic a typical

characteristic intersects the x coordinate, right at the point psi, yesterday’s class, I called it x

not, today I will call it psi at a point psi.

So,  what  is  the  equation  of  this  line?  Right,  remember  that  this  line  you  are  going  to

propagate a distance a in unit time, right. The property is being propagated at the speed a

units per second. So, it is going to be, x is going to be psi + at in fact the reality of the

differential equation. The differential equation that we are actually solving is dx dt = a @ t =

0 that tells you x = psi, that is what we are doing.

You understand? and I  am integrating  that  to get essentially  x = psi  + at  because a is  a

constant this integrated out but I want to make that statement a little more precise, right. I

want to be little more careful with that, okay because I will use this fact later, a in this case is

a  constant  everywhere.  But  what  is  more interesting  to  me is  a  is  a  constant  along that

characteristic. a is the constant, right but I want to say, I want to put in a peculiar fashion.

a is a constant along that characteristic that it happens we constant everywhere else I do not

care, right. Okay, so a is a constant along that characteristic and in fact it is just turns out that

x = psi + at, is that fine? Okay, so that is the equation of that line. Now, so what does this

equation do, what have we discuss so far? What this equation does is if on this length l you

prescribe  some  function  this  equation  will propagate  that  function.  Because  a  is  >  0  it

propagates left to right, okay.
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So, I repeat @t = 0 if you prescribe u (x,0) = f (psi). This is going to be propagated how?

What is going to happen to this f? So, something of the form f (psi) but what is psi? Psi in

fact from our equation is x – at, okay. So given the initial condition, so now we make the

jump.  Given the initial  condition f(psi)  in fact  given any function f  right,  which has the

appropriate derivatives as far as we are concerned.

Then f(x-at) is the solution of this equation. Is that fine, okay. Great and you can verify that

what is dou f dou x? Dou f dou psi dou psi dou x chain rule, right. What is dou f dou t? Dou f

dou psi dou psi dou t substituted into that equation which is how you would verify whether it

is a solution or not. What is dou psi dou x? Dou psi times 1, dou psi dou x is 1 and what is

dou psi dou t? times - a, is that okay, everyone?

So, this is indeed a solution. So, you can just substitute there and you see that dou f dou t + a

dou f dou x = 0. So, its satisfy, the equation is satisfied, okay. So, any function of this form

equation is satisfy. So, you remember where we started this? Earlier when we started off I

said can we guess the solution? right so now we are proving, we are looking at there is a way

by which we can construct the solution.

There is a way by which we can construct, the geometrical way by which we can construct

the solution  using characteristics,  right.  Those lines  were called  characteristics  and using

those lines we can actually construct the solution geometrically, okay and from there may be

we can get some. But now what we have done is we have seen from that just using a little



analytical geometry that we are able to say that any function of this form is a solution as long

as these derivatives makes sense.

Okay, you can complain that I took a step function, what is going on, right? Okay, right we

will see. We will encounter a lot of those situations but as long as these derivatives make

sense, right something of this sort is going to be a solution, everyone, right? So, how do we

do? Where do we go now? I will not still be able to guess the solution we have a general

form. I want something a little more specific, okay.

So, we will repeat what we did with Laplace’s equation. You can of course if you give me a

function f (psi) it is possible, it is on finite interval of length l to give me a function f (psi)

then I  can use possibly Fourier  series,  I  can use periodic  extension,  okay and I  can use

Fourier series to represent this function, okay. Why do I use Fourier series? May be I am

getting a little ahead of myself.

If I look at this function dou f dou t, so see, please remember I am now, I am trying to explain

the process of how we go about guessing. See, this equation is simple. You can easily, I am

pretty sure you can sit down but the process that we go through is very important is more

important,  okay. So,  I  see  first  derivatives  here,  so  from my  differential  equation  I  am

thinking exponential, right?

I see first derivatives; I am thinking exponential. So, okay I am going to get an exponential

but an exponential can go 2 ways. An exponential can go 2 ways. In this case the function

value did not decrease, right? So, I do not want an exponential and the form of an e power – x

kind of  a  thing.  Because the  function  value  will  decrease,  I  want  only  pure propagation

because that is what this equation represents, fine.

Which means that so, if have an oscillation it is going to continue oscillating that is what that

oscillation is going to be propagated. That is all that is going to happen, okay. So, the minute

you say oscillation not decaying, we have something that looks like a Fourier series, is that

fine? So, what we will do is we will represent if you give f (psi) I can write this f (psi) in

terms of the Fourier series, okay.



And how does that go? That goes over a summation over n, we are not going to bother with

the limits right now, okay. Go from – infinity to + infinity because I am going to write it in or

because I will take it from 0 and- l to + l. It depends on the lengths of the interval; you have

to be careful. So, I will just leave it vague, I will just leave it as n, right depending on what

exactly we pick the n range will have to be pick appropriately.

Whether, it goes from 0 to infinity or – infinity to + infinity. Okay so, we then we have An

exponent in wave number 2pi psi/L, is that fine, everyone? Okay and then you can do, you

can take ls 2pi, the 2pi is go away all that kind of stuff, that is fine. So, you can have a

function of this as a solution, so let me swing over here to the other side. So, what we have is

we will get back to the …
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So, what it basically says is that may u in general, I can write it as summation over n An

exponent in 2 pi x –at/L, fine, okay. So, we started off looking at this equation right. So and

by sequence of investigations trying to find out what it is, we were able we were lucky. It is

not always possible that we are able to do this but we were lucky. We are actually able to

guess a form of this solution, okay a general form of the solution, fine.

Okay, so we can construct geometrically using characteristics or given the initial conditions

you can try it to see whether you can use Fourier series to actually construct the solution,

okay. Right are there any questions? This course of course is not about analytical solutions.

We are interested in analytical solution only because we want to know how the solution to the

equation behaves.



So that when we do the numeric we are able to compare it with the solution, right and where

the numeric does not work that I am sorry, where you do not have an analytical solution,

right. Generally, then we will appeal to some theory of differential equations, so that we can

figure out, right.

Theory of differential  equation for example when talk about Laplace’s equation having a

maxima or the minimum on the boundaries that is the kind of result that would come out of

theory  of  differential  equations,  right.  Then  we  would  appeal  to  theory  of  differential

equation saying this is the problem that I have does the mathematical theory tell me anything

about the solution before I even solved, okay.

That is what the theory does for u. It will tell you something about the solution before you

even solved, okay. It is very important, right. So, the theory part is very important. So, then

we do the numeric and as a first cut then you can compare to see whether what the theory has

told you as satisfied by the numeric, okay.

In this case we have constructed a solution because this is actually a simple model equation

for the kinds of equations that we are going to solve at later point and we will run it to some

of the difficulties that you would run into let just say the full Navier-Stokes Equations or

whatever. We will run it to them with this equation, right. There are certain elements of this

equation, so we start with the simpler equation for that reason, okay.

So, we have a solution but now to the basic point of this course. I do not want to solve this

analytically, if I did not know the analytic solution how would I solve it numerically? What

could  be  the  method  that  we  would  use  to  solve  it  numerically,  fine,  okay.  The  usual

progression would be well we use central  differences for Laplace’s equation that seem to

work why not your central differences here?

That is you use for the equation dou u dou t + a dou u dou x = 0. You use a central difference

representation  for  this  and a  central  difference  representation  for  that.  But  I  look  at  the

boundary condition and at t = 0 I have a condition but I do not have anything beyond that, I

have a concern, okay. And for the central difference here, yes on the right side does used to be

some issue but I will ignore that.



But it is clear that I do not have, if I am going to in time and give a condition t = 0, I have

nothing behind that, right. So, if were to draw grid lines like I did for Laplace’s equation if I

were to draw grid lines, I really do not know how to take, I really do not know whether, I do

not know this value, I do not want to guess that value the future value. That should be like

guessing the future value, you understand?

This is the issue here and I do not want to start here because then I do not know anything

behind it. If I represent the equation here I do not know anything behind, right. I am only

giving you a complaint. I am not saying that it is impossible to use central differences, right. I

am sure we can think of ways of getting around it but my objective is, that is not my objective

right.

So, I have central differences here, I want to keep life easy so I use the forward difference

here. Is that okay, is that fine? That seems reasonable that I use a forward difference I use

these 2 points, I use a forward difference at that point. I use a forward difference at this point

and I use a central difference for the spatial derivatives, okay. So for any arbitrary grid point,

for any arbitrary point, okay.

So we can use central differences, so I will zoom in on this. So, for any arbitrary point Pq and

as we did in Laplace’s equation maybe at least in the x direction we will take equivalent roles,

right. The t direction also we can take equivalent roles but we will see what happens here. So,

Pq this is P+1, q this is P-1, q this is Pq+1, these are the points, right. I have gone with Pq

because I already used i for square root of -1, right.

Up here we have already used i for square root of -1, so I do not want any confusion, that is

why I have gone to Pq, okay. So, this very often in books, text books and so on you will see

this referred to as a stencil,  okay. This is just for you to get the jargon. You will see this

referred to as a stencil, right. So, this stencil occurs everywhere. So, you can take these 4

points and presumably solve wave equation.

And what  we are  doing here  very  important  what  is  proposed to  do  is  we proposed to

represent the wave equation at the point Pq using Pq and this 3 other points, okay. So, dou u t

dou t forward difference Upq+1-Upq/delta t + the truncation error which I am not so, I should



actually  write  an  approximate  there,  it  is  the  truncation  error.  Dou  u  x  dou u  dou x  is

approximately. U p+1q – Up-1q/2 delta x, is that fine?
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So, do we have substituting into our governing equation. So you have Upq + 1-Upq/delta t +

a times Up + 1q – Up-1q/2 delta x, should be approximately 0 we set it = 0. And this is the

objective, this is what I am trying to get. This is the objective. The objective is Upq + 1 then

we written as I take everything else note this is only one that is the time level q + 1. All of

these are our time level q.

So, all the ones that are a time level q and going to shift over to the right hand side, so I have

Upq – a times u + 1q Up – 1q/2 delta x. I miss something? a delta t, is that fine, everyone?

So, this is what we have, so in fact this expression a delta t by delta x is going to be appear so

often. We are going to give it assemble, we going to call it sigma. This appears so often that

we are going to call it sigma.

So, this is going to be Upq + 1 is Upq – sigma/2 Up + 1q – Up – 1q, okay. We have what I

would call that, right. So, given something a time level q you can then incremented to the

next time level. You understand what I am saying. You can find out what happens in the next

thing. Given at q + 1 you can go to the next time level, right. So, at each time level you can

move forward. We have a solution.

So if you have given an initial condition, you given an initial condition you can march that

initial condition forward in time, right. q + 1 is given explicitly in terms of expressions that



are recurring at time level time q, okay. So, this scheme is called an explicit scheme. Simply

because you have q + 1 occurring and this is these are all a time level q variable to solve for

it. It does not occur in an implicit fashion, is that fine?

It does not occur in an implicit fashion, so this is called an explicit scheme. Some time you

will hear it being called a Euler explicit scheme. We will call it forward time central space,

FTCS, forward time central space is that fine, okay, everyone? Right, so you could actually

quote this, you can go ahead and quote this, right but this is different, this is little different

from Laplace’s equation.

So, we are going to do a little analysis, right. There are 2 things that we have got going for

that.  One  is  when  we  did  the  stability  analysis  for  Laplace’s  equation  we  substituted

exponentials for the error term and the error check that is the error term decays or not what

happens to the error term, okay. In this case we have a similar set, in that case that was, they

were if you think about if you remember back they were Eigen functions of the exponentials

where Eigen functions of the Laplace. In this case they actually represent the solution.
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The equation is a linear equation, you understand remember linear equation basically means

equation is linear basically means that if you have if L is linear right, what does it say L (u+v)

= L (u) + L (v), right. L (u) + v is L (u) + L (v), fine, okay. That basically what, so again and

usual stuff, I mean the L (alpha u + beta v) = alpha L (u) + beta L (v). And this was the usual

description of something being linear, right.



Which is, why we know that ax = ax y = ax or ax = y, is linear right or the classical when we

talk about the straight line, this is the usual trap that people fall into. So, if you take the

equation y = this is an assign y = ax + b, this is not linear, right. Linear it necessarily passes

through the origin; this is not linear. It is a straight line; it is not linear. So, if you say linear

wait a minute it is a straight line does not mean that linear?

If that confuses you then think of curvy linear, right. Linear all it means is the line. Curvy

linear means curved line. You understand what I am saying. So, but in this case linear, this is

the technical term, right. The function is linear, the operator is linear basically means that L

(alpha u+beta v) is alpha L(u) + beta L(v), okay. And it is a very precise definition as a

consequence of which y = ax+b is not linear, though it is a straight line, okay unless b = 0,

fine.

Okay, so that equation is linear we ask the question again, so if you have dou u dou t or just

to keep this clean let me write a very general equation. So, if you have dou v dou t + a dou v

dou x = sum h (x) the h (x,t) h (x). Keep it as h (x), right. The solution is v, okay but v is

disturbed a perturb v, it has an error, right in Laplace’s equation case I called it e, in this case

I choose to call the error u, for obvious reasons that I already have an equation for u.

So, if the solution, if our candidate’s solution is v + u, for candidate solution is v + u, okay

and you substitute  into  that  equation  because  this  is  a  linear  equation,  what  is  going to

happen. What is the equation governing u? Our original equation, you understand what I am

saying. So, if I substitute this backend again Dou v dou t + dou u dou t + a dou v dou x + dou

u dou x = h (x). I am sorry a dou u is very important, a dou dou x thank you, right.

This combination, this, this and this the combination of these 3 satisfy each other. They knock

each other out. The combination of knock each other out us dou u dou t + a dou u dou x = 0

as  the  equation  that  governs  that.  Looks the same suspiciously, the  same as  the  original

equation, right and you would expect that because it is a linear equation.

Even  in  Laplace’s  equation  case  the  equation  governing  the  error  was  the  same  as  the

equation governing our original function,  a solution is that fine,  okay. Right,  so what we

have? We go from here.
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So, I want to substitute now in dou u dou t + a dou u dou x = 0, which is now the equation for

our error and I want to ask the question when does this decay for this particular scheme that

we have chosen does it decay, okay for the particular scheme that we have chosen does it

decay. I want, what was our u? u is like summation over n An exponent in 2pi by L (x-at).

What you say?

Okay and because the equation is linear this = summation of Un over n, right we have that

individual Un’s are An exponent in 2pi/L x-at. Okay, we will play the same game we are

playing for Laplace’s equation. We will say for which wave number, is there a wave number

is there a bad wave number, right? If we can say that for the worst for the wave number

which has the largest gain as we march in time so this is what we are doing.

We have a perturbation or an error U in our solution, okay. We want to know that if march

from time t = 0, t = delta t 2 delta 3 delta 3 so on, as I march. Is that error going to grow or is

that error going to die out? Does that make sense? Is the error going to grow or is the error

going to die out? That is the question that we are asking.

So, basically what we will do is we will pick one wave number then ask the question for the

wave number which has the largest gain what happens? Right or is there a way number that

has a problem that essentially what we are looking for is there some particular wave number

for which we are going to have a problem, okay. So, because I already got queue right, so you

please allow me to drop this n.



We understand between us we understand now that I am going to take look at the end wave

number, right. So just, otherwise we just be carrying along a lot of these subscripts. So, let us

just assume that we understand that I am dealing with end wave number. So, what do I have

now? My view is Upq + 1 is Upq sigma/2 Up + 1q – Up-1q) and I said it earlier what is the

relationship between Up + 1q and Upq.

So, if my x is P delta x, right and q could be we do not really need but q could be, t could q

delta t. You could keep delta t constant if you want but it does not matter. If my x is p delta x

and t is q delta t, okay my x is delta x t is q delta t.
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What we have, Up + 1q = where do I get this now, An exponent in excess P + 1 delta x – at at

the time level, I leave this as t, okay. And this is nothing but An you can just check, so it is e

power exponent in, I forgot the 2 pi/L in 2 pi/L delta x * Upq, fine. And in a similar fashion

because there is a free delta x here which is x, this is basically express delta x, right. And Up

– 1q in a similar fashion is exponent in the – in 2pi/L delta x Upq, fine.

So, I can now substitute into my forward time central space. Upq + 1 is Upq – sigma/2. Up +

1 is this one, this is a mess but these 2 expressions are the same. So, I will just redefine

something, I will redefine that as theta = n delta x 2 pi/L, right. I mean, I could take L = 2pi n

that will go away, it does not matter. So, this is e power i theta – e power – i theta * Upq.

Everybody with me, okay.



I can divide through by Upq, and I get the gain g as Upq + 1/Upq 1 – sigma/2. What is e

power i theta – e power – i theta? 2i sin of theta, remember I am using Euler's Formula. e

power i theta is cos theta + i sin theta, fine. So, this gives me the gain as being 1 – i sigma sin

theta. This a good news or bad news? What do you say? So, you want the gain, the magnitude

of the gain to be less than 1, right.
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We want g to be < 1, okay. But what is g? What is the magnitude of g? g is or g square be < 1.

What is g squared? 1 + sin square theta. Sigma square 1 + sigma square sin square theta. See,

the only parameters that we have to choose, right. Now, this brings this whole thing now we

face the fact. You cannot change a, the only parameters that you have to choose a delt x and

delt t, okay.

So, sure I mean theta depends on delta x and so on but there will be the wave we know that

there is a highest wave number that we can represent, right. So, that all of that is very clear.

We have no probably issue with that. So, the only parameter that you can chase change the

sigma, right. It is not complex. I mean it is real. So, sigma square we are stuck with it am I

making sense? We are stuck with it.

So, sigma square there is no sigma, sigma value for which the sigma is going to be < 1. So,

this  does not work for us. Theta = 0, yes = 1, right  but theta  = 0 is the DC component

essentially. So, theta = it does not help us. We are not getting anything, right. Is that fine? So,

forward time central space, FTCS is unconditionally unstable for, be careful now when apply

to one dimensional linear first order wave equation, fine.



You have question? Why should g be < 1? See, when you go from time q to q+1, if you go

from time q to q+1 if g is > 1, right. So, we are, you are basically look at this as a sequence.

So, you have, you are generating a sequence, I will leave out the p part you are generating a

sequence which is Uq. You are generating a sequence of use indexed on q. And we are asking

the question does this converge and we in fact wanted to go to 0.

U in this case is the error, right. They are original solution U in this case is error. You are

asking the question does u go to 0? U is the error in v. U can have which is non 0. U can be a

solution which is no but it does not satisfy our original equation. Is this satisfying our original

equation including the boundary condition? Well it  has homogeneous boundary conditions

and homogeneous then you can add it, right.

And then the question is what happens in the initial condition. So, it has be 0 at the initial

condition and somehow it magically came out. You understand, okay, right. What we are

basically saying is even from our numerics typically see where these things come from is

even from the error. It is not that there is an error that you have injected into the solution and

does not decay.

There is a source of the error which comes from our say from our round off, right. From

various reasons just a source of error that you have. What happens to that source of error?

Right. It is no different from the whistling that you hear in an amplifier. The whistling that

you hear from an amplifier it is not that there has to be an input just thermal noise in the

resistors in the circuitry.

The thermal noise is enough, so the issue was, the question that you have is it is not that you

have the disturbance is there. You have the thermal noise which is equivalent, equivalent here

would be I have round off error at every step I have these errors and making these errors.

What I want to know is errors grow or those errors do not grow. So, in a sense I am not

actually answering the global question.

What  you are  talking  about  is  the  answering  the  global  question,  right.  So,  the  stability

analysis that we are doing both what we have done here what we are doing now and what we

did in Laplace’s equation. This is a local one. We are only asking at a given grid point what is



happening to the what happening to the solution, if I were to integrate it out but not for all x.

Am I making sense? Okay.

Say I see where you are coming from you are saying it is a homogeneous equation. This

equation is homogeneous equation it basically does not disturb you can add any amount of

this  homogeneous  equation  solution  like  you  want.  Some  constant  this  homogeneous

equation but normally in your differential equation if you look at it the way it works this, the

homogeneous part actually takes the boundary conditions.

In this case even the boundary conditions are 0. So, in the sense this id does not, this is truly

sort of in the null space of that operate. It does nothing, okay. But potentially if it grows it can

grow up. The problem that you have is if I, the difficultly that I have is if this Uq if the gain is

> 1 the sequence that I get is diverging. So, I am going farther and farther away from my v

that satisfies the original equation.

No, there is no issue of boundary condition because I am only working at a grid point. No, I

am not looking at a solution that is whole point. No, we are not looking at it, the solution is v.

The only question that we are asking is there a wave number that is unstable in a sense, is

there a wave number that is going to grow. That going to become unbounded, if I disturb that

wave number or there is an error in that wave number is there a wave number that is going to

grow. That is all.

That is the only thing that is happening, Is that fine, right? So, that is basically, so we are

generating at this point p. So, though I removed it I will stick it back there at this point p we

generating a sequence indexed on q. And they are asking the question what happens at the

point at that X location what happens as q goes. But it is a, the analysis that we are doing is a

local analysis.

It is not a global analysis may be one may be at one of the other classes I will do a global

analysis where I take the boundary conditions also talk about, right. That is really what we

should do, okay. Here sort of I beg of saying well this we are engineers this is how we get this

and this is already unstable. Forget doing the full thing this is already unstable, right. We are

already out of luck. This is already unstable, fine.



And you can try to implement this and you will see that it is unstable. Try to implement this

so, this analysis actually works, okay. This analysis actually works which is not justification.

I cannot just say that it works and they work, right. But what I am saying this is analysis

actually, so this gives you this q’s this sequence of q’s that you are going to generate using

that automate on which it is FTCS if there is any disturbance it is just going to be that.

Is that fine? It is going to diverge. If there is a smaller disturbance that disturbance will grow

that is the key, fine. Is that okay. So, this is where we are FTCS did not work. So, the next

thing is, next obvious possibility is we did forward time why do not we try forward space?

Now we are groping in the dark. If did not work now we are sort of groping around trying to

figure out what to do.

So, forward time, use forward time let us try forward space. Is that fine? So on Monday’s

class we will do forward time forward space FTFS, right and let us hope that it works, fine.

Okay, I will see you then.


