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Okay, so we will look at a few demos that I have been planning to do for some time, right. So I

think quite a few of you sent me the error and evaluation of the derivative of sine x, okay. So, I

will repeat part of that process, most of the codes that you write will be either in C, C++, or

Fortran or whatever but because this is a demo like last time, I am going to use the scripting

language, Python, right and again to do the plots, I will use Grace plot.

And we will also look at the second demo which is solution to Laplace's equation, right. So I am

not going to do anything fancy. I will just do the initial simple, right just to show you how the

thing goes and again as I said most of you may have already tried to write these programs. So the

objective is  2 fold.  So I  am not going to show you a canned,  precanned package.  So I will

actually write it so that you can see that I make the same kind of mistakes that you make, right.

There is nothing, nothing unusual about it. All of us are error prone. The second thing of course

is maybe you will get an idea so how those process actually works, right and along the way, we

look at the results and possibly discuss some of the results. If you have any questions, right, you

feel free to stop me, right. So we will just explore what it is that we have. So the first demo was

going to be basically how well we are able to evaluate the derivative.

I will write for the first order, right, one-sided difference, say a forward difference. We will do a

forward difference and look at what happens and maybe we can also do a central difference just

for fun. After that  I do have a canned package,  right because I do not want to do the third

derivative and fourth derivative. It is that you do not get anything out of doing that, right. Is that

okay, right. So I am going to use my particular favourite version of Python chordal IPython since

I am also going to do Laplace's equation.
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And I am going to do the visualisation using a package called Mayavi which was originally

developed in this institute. So obviously I am going to use that package. It is part of enthought

sweep of programs right now. So let me just get started, right and along the way, yes, I mean I

know that some of you may not be familiar with Python and so on. Where its important I will try

to show you what happening, right, what this language is all about.

But if you want to find out, I would suggest there are tutorials out there, you can go learn the

language by yourself.  It  is  not  that  difficult,  okay. So once you know of  one programming

language, you should be able to handle it, right, okay. So the first thing is to just set up Grace

plot so that we are ready to plot, okay. Since I know I want to plot, so I get my plotting package

ready and of course it is going to be an intense white color that may not come out that well on

the screen.
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So I will quickly change it to, quickly change it to a colour that will, quickly change it to a color

that is more amenable to the videotaping and so on. So I have my plot screen ready. All I need to

do now is to get something to plot, right, okay. So I am going to use again the package Numpy

which is part of enthought scientific sweep. So from, maybe I will just import, I will do it, this is

compared to what I did last time.

This is really the proper way to do. So I import Numpy as np. So it will be called np instead of

Numpy, right, okay. Okay? The point at which I am going to take the derivative I think in the

assignment I suggested pi/4. So I will say x=, so in np because having called it np, I may make a

mistake, so keep your, keep safe, stay alert so that I do not make a mistake, okay. I think pi/4 is

what I started, 1/4 of pi/4.

I say pi/4 but I always multiply by 0.25, right, even if I am using the scripting language and the

initial dx, we can choose the same as, we can choose the same as x and so it is very large. Initial

dx is quite large, okay, right. Pi/4, 4 is almost 3 quarters, initial dx is quite large. Now I want to

be plotting the stuff. So what we will do is, we will have an error and we will have the dx that we

are going to generate.
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So I am going to have a list that I will create, an empty list that I will create which is called error

and I will create DX, capital DX which will be the list of DX's that we are going to use, right.

The error is set now. Because I am a bit lazy and it  is a good programming practice,  I will

predefine sine x because I know that I am going to constantly be using sine of x. I predefine sine

x as, right, so sx is sine x and its derivative which I will just call cx.

It is np.cos of x, fine. So we have now defined sine x and cosine of x, same value because it is

pi/4, right. So we are now set. So what we will do is, how many, how many different dx value

should we take? About 60, 60, you have taken about 60, okay, I will do 60 or i in range 60, okay.

So first we will define the derivative, df. So that is going to be, I know I am going to divide by

dx.

So I open bracket close bracket. Every time you open bracket, should get into the practice of

closing the bracket. Sine of, np. sine of x+dx, having said that I open and then close the bracket,

sx/dx, that is the derivative, that is our forward difference and there is an error in this derivative.

What is this error? So I am going to take the absolute value of the error. So that is going to be df-

cosine x which is the error and I want the relative value, okay, so the relative error.

So that is the error. So now I have got for that dx, I have the error. So all I need to do is I need to

save this somewhere. I create a Err just for this reason. So to the list of errors, I append this



current error and to the list of DX's, I append my dx, okay. All I have to do is create the next dx.

So DX is 0.5, I will not use any weird, right you can say star equals but I just said dx=0.5*dx. So

it will half the dx value, fine. I think I have got everything there.
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So it should be done. So what we do is, we plot this. So on the graph that I created, I plot dx

versus error, error versus dx, error versus dx and what do I get?
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Well that does not make sense. So the deal is what is happening. What is happening here, that

does not make sense. So we will have to fiddle around a little with the scale. So it seems that the

error started off at some value, goes linear, this is what you will predict that it linearly goes to 0



but there seems to be something happening on the, on the spot. There seems to be something

happening here.

So I will change the scale. The key thing to do is I want to change the scale to a logarithmic

scale, so I go to 1E-16 which is about a small s I can get here. I go to a logarithmic scale. I apply

that, oo, it is and change the major spacing values, okay. So this is what I would... as I said this is

what I would normally go through and let me just except this. Let us see. So we get something

that looks like that but clearly it goes down to 10 power -8, 10 power -9.

Let me change the x axis also because I know that too goes through. So 1E-20, right, okay and

go to a log scale is to I need and I apply that and that is what I have got, right. I think a lot of you

have seen this, I see a lot of people nodding. This is what I have got. So if it were, so in calculus

what you do is, remember, it is called finite differences because we just took a difference and left

it like that.

We did not go through the infinite process. In the infinite processes, you take the limit delta x

going to 0. So in calculus what you would expect is as delta x goes to 0, the error should go to 0

and you should get the derivative,  right but we have a machine that has finite precision and

therefore, we have round off error and the slope of this line is, what does this or what do you

expect the slope of this line to be? The slope of this line, the slope of that line should be what?

Right, because the truncation error, the convergence, remember this is the order at which, the

speed at which it is going down. It is converging to the actual answer was that delta x, right. So

the exponent is 1. So the slope of this line would be 1 and plotting log delta x, log error versus

log delta x now, okay. So the slope of this line is 1 but surprisingly, there seems to be, it seems to

stop at something that is not such smooth line.

But if you squint at it, it looks like it has slope -1, right. You start squint at it, it looks like it has

slope -1, right, okay. So we will leave this graph and this value here, is of the order of 10 power

-8, 2*10 power -8, okay. You may not be able to actually read it out but it is of the order of 10

power -8 and that error occurs close to 10 power -8. So looking at this, the immediate conclusion



that we can come to is, if you are doing forward differences, at least with this particular function,

we will try out different functions a little later. 

At least with this particular function, it is not worth taking a delta x smaller than 10 power -8,

okay. It is just not worth taking delta x below 10 power -8 because you are going to just be

getting, your round off error is going to dominate and it is not getting any more accurate, fine.
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So I will just hold this graph just so that I can plot another graph on top of it and what we will do

is we will go through the same process. We will now do central differences, okay. We will go

through the same process and we will do central differences. So let me redefine my dx because I

sort of set may be this is not what I want to, oh oh oh oh. I made a mistake. Here we go. Let me

define my dx as = x again. I redefine, I clear up my capital dx. I clear up my error, I reset them to

0, okay.
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And in order to get, in order to get the first difference, so I am just reusing, I am just reusing the

same code, the only difference is for central subtle differences, this is sine of x-delta x. Now you

have understood why I am sort of using this and I have to divide by 1/2, 2dx. In this case, I will

make it 2dx, I will divide by 2dx. I think everything else is fine, everything else is the same,

everything else remains the same, okay.

That is fine? So if I plot this now, so this is second-order actually. If I plot this now, you already

have seen, so for this kind of exploratory work and interactive interface like this is quite, quite

useful, right. So if you are doing production runs and for the kind of thing that you are learning, I

will suggest that you stay with C or C++ or Fortran or whatever and this is what we have, okay.
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So it is the, it is delta x squared, the truncation error is of the order of delta x square, that means

that it is converging at delta x squared. So the slope of this line here, is 2 because I have taken

log, okay and I am plotting versus delta x. This slope has not changed. Round off error is not

changing. So what has happened is I have gone to a more accurate scheme and there is a line

here because this is log, log scale.

I would suggest that if you have tried it out already, figure it out, just write out the relative error,

take log on both sides and see what you get, right and you will see that you can actually explain

why this is a 45 degree like, the round off error line is a 45 degree line. It is a 45 degree line and

essentially what it says is that in the numerator, right, every time the delta x becomes closer to 0,

okay, in a binary system by 1 width.

You lose 1 bit in the numerator in round off error and effectively you have, so you are not getting

as you hit up, you hit this limit. So this value is of the order of 10 power -11, okay. So the best

that you can get is of the order of 10 power -11 but the delta x that you can take in order to get

that 10 power -11 is 10 power -6. So if you decide yes I want a more, I want something that has

better  truncation error, I go to a delta  x,  so I go to something that is  converging as delta x

squared.

I cannot take as small a delta x. Yes, I have gained something. Instead of 10 power -8, it has



become 10 power -11 but I just cannot make it, you know I cannot go back to 10 power -8 at

delta x as 10 power -8. That is not possible. That does not work. Because if you do that, you are

going to end up back here. So you have gained nothing. The second-order scheme is giving you

the same as the first-order scheme, that is the key, okay, that is the key.

It is very important because sometimes we have tendency to say, "oh I am going for very high

accurate, I want to get this really accurate scheme, go for as higher order as possible, make the

delta x as small as possible". So there are, you have to be careful. You have to be careful. We

have the resources but you have to be careful, okay. So, now instead of, so I can do a backward

difference, forward difference.  You know there are variety of ways by which I can, I can go

through this. As I have said I have got a prewritten, prewritten code for...
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So I will just import prewritten code that I have. So all of this stuff as I said you can just go

through a Python tutorial quickly and figure out what we have been doing here. So in this I have

something called error.

(Refer Slide Time: 16:42)



And what this will do for me is this will open up this nice window again. I will make sure that I

set it up so that the demo colours are on, right, so that I do not blind you guys. Let me go back

here and I have a simple function plot error which will actually plot the error. It will compute this

for  first-order,  forward  difference,  backward  difference,  second-order,  right,  second-order,

central differences, one-sided differences.

So there are whole host of these kinds of things, third order and fourth order. That is what it is

going to do. So let me show you, so I have an error there but it does not matter. Let me show you

what I have got. So that is what we have, okay. So this needs a little explanation, it is really

messy. So what I have got here. I hope this is clear. What I have got here is first-order forward

difference.

The symbol, this symbol is backward, is the dot is backward difference, second-order center,

second-order  forward,  the  rhombus,  the  second-order  backward  difference,  third-order  and

fourth-order. We will zoom in on that so that it is clear as to what we are, what we are up to. In

this scale, what I want to show you is yes that line, round off line, you cannot get, you cannot

avoid it. It is going to be there.

You have to live with it, okay. So whether you do first-order, second-order, third-order, fourth-

order, I know you know the slopes are 1, 2, 3, 4, okay and in this region, it does not really look



like. So I would not trust anything beyond this. It is lower here but his looks like the same noisy

thing going on. So fourth-order, that is of the order of 10 power -13. So going from second-order

to fourth-order, I went from 10 power -11 to 10 power -14, 10 power -13 and the delta x is of the

order of 0.001, okay. 

And in the similar fashion here, that is still of the order of 10 power -12 and the delta x is of the

order of 0.002. So it does it, okay. So I want you to bear this in mind. So if you are going to use

combination, you are going to do these derivatives, you are going to use combinations of delta x,

you know second derivatives, third derivatives which we will see as we go along.

At that time, when you are doing it, I am going to add the second derivative term, I am going to

add a fourth derivative term. Please remember that curtails and limits the size of the delta x that

you can choose. Is that fine everyone? Okay. Let see the zoom in to see what is happening here.

So what I can do is I can pick one segment somewhere there and we have lots of graphs but this

is the one that I mean to stress.
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This was my first 45 degree line, right, forward difference and the dots on it are the backward

difference and this part, they are reasonably good, one on top of the other. Remember I am taking

absolute value. The sign was different but they are reasonably good. They are essentially one on

top of the other. The derivative is the same you would expect to be the same. In the other case



here, they do vary. They are close to each other. They do vary, fine.
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So if I hunt for the, if I just hunt for the other trough, here is the second derivative term, second-

order term for the first derivative, second-order term for the first derivative. There are 3 of them.

So you can see the box, the black box, the black rhombus, right, the square, the rhombus and the

dash line. The minimum is not quite at the same point. So I most probably but they are, they are

reasonably, reasonably fine but they stick to each other, right.

They are quite  close.  So in  that  sense if  you are forced,  so central  differences  have certain

advantages. One-sided differences have certain advantages. We will see why we would use each

one at different points. We will see that as we go along but the truncation error behaviour seems

to be the same, okay. Is that fine? And finally, just to keep, just for completeness, so you can see

around here as I said I do not quite trust this. So I would most probably take a value around

there, right which is about 0.02 and possibly a value around there.
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That would be the smallest delta x that I will choose, right and that is about 0.015. Is that fine?

Please bear in mind that this is for sine of x at pi/4, okay. So we are not doing mathematical

analysis or something of that sort. This is purely empirical; this is purely empirical. Is that fine?

What we have? What is the next thing that we can do? May be we can change the function.

Should we try changing the function. So what I will do is I will create another...
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I will create another plotting. I will create something else to evaluate it. So ooerr., I will just set

this up first, okay. So you are going to get a flash of white again. Let me quickly load my demo

parameters so that I get that out of your eyes, okay. So we have that ready. We need to define 2

functions, okay. So maybe I would not do it and you can, you can create lambda functions in



Python but I will just create, I will say define f(x), I will define f(x).

What do you want to, what, which function do you want? Linear function. X squared, okay, fine,

x squared. So I return, return x squared. Define f prime. F prime is the derivative, right. So I have

to be careful. I could have it do it analytically but let us do it ourselves, okay. Return, I do not

want to do any fancy programming here, 2.*x, 2x, the derivative, okay. Is that fine? So what I

will do is I will now plot and if everything works well, that should just work.
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Ooop, I seem to have some error as I said but it is fine. What is this? What is the strange thing

that has happened here? What is the strange thing that has happened here, right? You just get

what, what is this line? This line is going all the way down. This line goes all the way down.

That is a 45 degree line, right. Can we explain this line? and then you have this which is the first

order. So can you explain this line.

So normally if you were to do this, what you have to do is in your mind, it is like playing a

detective game. In your mind you have to predict. From what you know, you have to tell this is

what I expect. I try this function; this is what I expect. You have to try it out, right, that is how

you, that is how you exercise your understanding. You will predict what is going to, and then

plot, okay.



That is what you are doing. Then you have to explain the difference. If you manage to get what

you, what you have predicted here, it is fine but otherwise, you have to explain the difference.

What  has happened here.  Can you tell  me what  is  the deal?  You have to remember we are

plotting x squared and we have a, so this truncation error, if you go back and look at it, this

truncation error was like delta x*do squared phi*x squared, right.

It was the second, in this case, it is doing squared f do x squared. So do squared f do x squared is

2. You see what I am saying. Do squared f do x squared is 2. But any higher order, is supposed to

be a 0. It is supposed to be 0. It is supposed to be 0 but actually what you have got is only round

off error. The truncation error can go, the round off error is always with you unless something

peculiar happens.

We will see something peculiar can happen. We will try out one more and see something, right.

So the truncation error is 0 because you have picked something so that the third derivative, the

truncation error has a third derivative. So legally you should have got 0, right but you are struck

with round off error. Is that fine? You are struck with round off error and that round off error is

with you. So even if I were to shift the graph down and there is something funny happening here.
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So there may be because of the representation, you may have chosen delta x values where indeed

the truncation error by chance and the round off error because of the values are exact in binary



system, happened to be 0. Sometimes you are lucky and that is what these lines indicate. There

are values, there are values at which it is actually gone to log 0 which is -infinity. There are few

values where it happens.

Is that fine? Okay? But otherwise, otherwise, what we have, I am sorry, maybe I should not have

done that. I will close it. Otherwise, what we have is, you just have round off error, right, and

that is a, you have to live with it. Even though you do not have, even though you have managed

to  choose  a  scheme  so  that  your  truncation  error  is  0.  Is  that  fine?  Okay?  Are  there  any

questions? You want to try a third function? Suggestions for a function?

Yes, I think well that is going to behave very close to sine. Unless you pick a dirty value or

something of that sort, right. You want to try log x? That is okay. Let us say log x, right. Unless

you could try, you could try the sync function or something, yes, we have to pick a value, maybe

you could try a value which is close to 0 but then I have to be careful how can I divide. I cannot

take relative errors. 

You have  to  take  absolute  errors,  okay, fine.  We will,  we are  human.  We will  try  log  x or

whatever it is, okay, fine. So I will create, I will create one more...
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This time I will go through this quickly and yes, I really should have this so that I reuse the



plotting program but anyway it does not matter. So each one of those sort of inputs, its own grace

plot, it does not matter. So I now define g of x, a different, oops, I do not want to call it g of x, h

of x. See this is how you make programming errors. I already have a g which is the plotting,

right. So I want to return, you want log of x, is that what you said, log of x and I have defined h

prime, I call it hp of x and return, the derivative is? 1/x, okay. So let us see what we get now. 002

h, hp, I will popup maybe.

(Refer Slide Time: 28:37)

Oh, what happened? I made a mistake and sometimes you make, you can play, you can pay a

price for this. See whether the price, how bad the price is? Oh my god.
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Look at all those. So log is, log is a little interesting. So you get something that is very similar to,

well it is a transcendental function. So maybe even sync would have been the same, right. But

there are, there are places where, there are places where it does seem, they are right. The round

off error seems to go away. There are places where,  when you are doing computations,  you

cannot hunt for, mean you do not know what values of x you are going to get, right.

So these are not, it is interesting to know that this can happen and by chance, by chance, right, if

it happens for you, it is nice. In this case, because I am getting -infinity and so when the program

is not doing anything bad, right, you pop up a window and I kill that window, program is not

doing anything bad but you have to remember that when you are taking log, you have to check

the argument.

That is one of the things, by chance it may turn out that it is 0, okay. By chance it may turn out

that it is but otherwise, I think it looks the behaviour is essentially the same, right. So that is

about 10 power -19, 10 power -13. This value though is 0.004*10 power -4, 10 power -5, the x

value. So you have to, I think, right. So the slopes and where they intersect, what values that you

take are essentially the same, okay. Okay, fine? 

So we are done with this if there are no questions? Are there any questions? If there are no

questions, I will leave this demo B. Let me just show you, right, we will try to see how much we

can do by way of Laplace's equation today, fine.
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So I will choose the small, small grid to start with. What I am going to do is I am going to use as

I said a package called Mayavi. So from, I will just set it up right. So from this Mayavi, I will

import, write a particular module called mlab. Now initially what I will do is I will use a 5*5, I

will choose, I am sorry.
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This is what is called, so if you have a live demo, these are the things that can go wrong. You see

if I get out of that and we restart it, okay. So what I will do is I will, I will create a 5*5 system

first or a, right, 6*6 system or whatever. We will create a small system and then just so that you

understand how the Numpy Python part works, right. I just want to make sure that you get that

part first, right and then we will see.



So then we make sure since I said dumpy, let me make sure that I import Numpy as np and just

in case, I need, I will import grace plot also, okay. So all that stuff is my basic homework is done.

Now in this case I am going to use a package called mgrid, I am going to use a function called

mgrid and what it does is, so between 0 and when we have been solving problems between 0 and

1, I am going to have 5 grid points.

You have seen this notation before and in the x direction and in the y direction also we will have

the same thing. So this 5j, it is actually a complex number. It is a way by which you tell, you tell

Numpy that you want 5 grid points and that creates essentially a mesh, okay. So let me show you

the mesh. That is x. So you can see the x values are, right, 0 and then they are increasing by 0.25,

0.5, 0.75, 1, okay.
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So those are my x values and my y values are in a similar fashion, 0, 0.25, 0.5, 0.75, 1. So xy

combinations will give me coordinates. A combination of an entry from x and an entry from y

will give me coordinates, okay and my solution that I use, what I use for, right, what I suggested

for you guys to try out was x squared-y squared. So I can see what that looks like, okay. That is x

squared-y squared.

So that is p, x squared-y squared and yes, you can check it out but you can see that the diagonals



are 0, x=y is 0, right. So that is reasonable. That looks okay. Is that fine? Okay? Now I want to

show you and this  is  something  that  is  done in  most,  lot  of  these  programming  languages,

scripting languages. Let me just show you to see how I am going to index. I am going to choose

ranges of indices so that I do not have to do a lot of loops.
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So I just created a list, an array, which has 11 elements, 0 through 10, okay. So if I say a of 0, that

gives me 0. A of 1, gives me 1, fine, no big deal. You can also do this. You can say a of 1:-1 and

that will basically drop the first element, drop the last element. Is that fine? Everybody is with

me? So instead of 0 through 10, I have got 1 through 9, okay.

I just want you to understand this. So if I make this 2 instead of 1, it drops the first 2 elements,

retains all the others, okay. If I make this -2, it drops the last 2 elements. Am I making sense? So

what this allows me to do is when I am saying i+1 i-1, all I will do is I will shift that, okay. So

for instance a of 1:-1 gives me all the interior points essentially. Is it okay?
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So in a similar fashion, phi of i, this has 2 coordinates 1:-1, 1:-1 will give me the interior points,

okay. So that gives me the interior points. Is that fine? Because we are going to solve for this.

See we are not supposed to know the, know the solution, it has been solved for this, I will set it =

0. I will set the interior points to be 0. So that is my phi0. This is my solution vector, okay.

This is my candidate solution. My initial condition is 0 and the boundary conditions are set. Is

that fine? Everybody? Okay. So how would I do Laplace's equation, right. So normally in C,

right, you would use a forward loop. In Fortran, you would use a do loop. Here we are just

basically going to write it out. So what you would have done so far was, so 1:-1, so the interior

points, I am going to update the interior points, =0.25* one-fourth of what?

Phi of,  we want to shift  to the left,  0:-2 that  shifted to the left,  1:-1,  nothing done in the y

direction,  +phi of, I want to shift to the right, 2:,1:-1, I do not want to do anything in the y

direction. Now we repeat the same process but only in the y direction, okay. So phi of, what is it?

1:-1. So I do not do anything in the x direction now, 0:-2. So I have shifted it down, no, sorry,

sorry, sorry, sorry, sorry.
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Let us go through this again. I hit enter too quickly. Set the center value to 0 and I have one

more, phi of 1-1, tell me? 2:, okay. That should be right. So we just have this, right and it is

always important that we able to see what we have, fine. So what I will do is I will create a

visualization now. I am going to use Mayavi to do that. So I will say v, there are various ways to

do it.

As we go along, maybe I will show you different ways by which we can do it. Today, I will just

use mlab and I will use something called a contour surface, contour surface. To contour surface, I

need to pass it the xy values and the phi value, okay. So I have xy phi and I would like to tell it

how many contours. So let us say we add about 10 contours, okay. Now because this is a actually

a 3D plotting utility, it will plot the contours on the actual solution surface, right.

Today, right now I do not want to do that. We will do that; we will do that at the later date. Right

now, I want to keep it simple because, so what I will do is, I will say a warp scale. So how is,

right. So all of these things as I said you can, the documentation is available on line. So I will

just set that to 0 and that should think for a short while and just basically give me that. That does

not make sense.
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So you can ask the question, what is that? Okay, so we will try to see whether we are able to

make any sense or do it give it a coordinate system. I will, I will scale it up. So that still does not

make sense. So let us see if we can, I use mlab to add an outline or something of that sort so that

we get the box okay. That is our unit square, okay. That is our unit square with the contours and

let me maximize it for you, make it large, okay.

I think I will also add a scale so that you have an idea as to what is happening. Okay we have

added number of contours. It should be in texturing, okay. That is not what I want to do. Or do I

want to do. Show legend, that is what I want to do. I want to show a legend and I close this. Yes,

you have got the legend there. Now I will maximize this so that you can look at what we have.
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Here we go. So I have a legend, fine. I have a, I have the legend. It goes from +1 to -1 as you

would expect and that is my initial guess. Fine, everyone? So this, in case you cannot make that

scale out, yes. So that the xy coordinates. So this is, this is the x direction, that is y direction,

fine. I hope you can make out the scale. Are there any questions? Okay. Let me just reduce this to

something that is smaller and do this one more time, okay.

So and we may want to keep track of the error, is it possible for us to look at the error. We can

actually look at the error, okay. It is possible for us to look at the error. So what I will do is I want

to keep track of the error. So I will like last time, I will create, I will create a list called Err but I

will calculate the error. Error is, what is the error? What was the solution? x squared-y squared

and from this I want to subtract (()) (42:11). Everyone, that is fine? Okay. So and what we will

do is, we can visualize the error also. We can see what the error is.
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So v.mlab scalars=err and that is what the error looks like, okay. So the error is symmetric. The

error is symmetric. If it is too small for you to see, I will maximize it again.
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The error is symmetric. The error goes from +0.125 to -0.125. The error is symmetric, okay. So

this demo is 2 fold. One is how do you explore. When you are doing numerical solutions and so

on, how do you explore your schemes. How do you go about that process? This is interactive.

You can try things out, okay. So and the other is that we try to figure out how, how fast. So I have

got this error but this is a, this error is a matrix, right.
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If you say, if you ask the question what is this error? This error in fact is a matrix. So 5*5 matrix.

It does not help. So let me take the square of that matrix so that those negative numbers go away,

okay. Let me take the and what I will do is, I will take the square root, I will take the square root

and put it in error, err, my list, okay, square root of the sum of all those terms. That is why you

should open and close brackets every time you do it, right and make mistakes otherwise, okay.

So what is err? Err has one value.
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So the error now, the square root or the sum of the squares, this point 3 after one iteration. Is that

fine. I can do one more iteration. Let me go back, find my iteration, I will do one more iteration,

okay, one more iteration. What does that do to the solution? What does that do to the solution?



So that is what you get.

It looks about the same, right. What we will do is at a later date without doing all those errors

and all that, we will run it once and you can see the solution of all that, right. I will make one

fancy demo where I have got everything right, so that you can see the solution evolving as it

goes along, okay which is all so far but as I have indicated, you are, let me just maximize it.

(Refer Slide Time: 44:56)

As I have indicated, it looks symmetric. Everything is nice and I can also plot.
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I can also plot the error just like we did last time. So I do that error is x square-y squared-5. I can



plot that.
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See what that looks like. So from 0.125, it has become 0.0625. In fact, it seems to have halved.

Range of the scale seems to have halved, okay. So that is basically what we have. The range of

the scale seems to have halved. So we can do, we can do this business now. So we say where did

we have that. I had errors. I will square the error and I will append that. I will append that, fine.

Okay, everyone? Okay, so we can keep doing this manually instead of doing this, it is nice when

you are doing it once or twice but what we will now do is, we will iterate.
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How many times you want to do this? 100 times? You want to do it 100 times, let us do it 100



times. See what we get? Okay, 100 times. I am a lazy guy and scared I may make a mistake. So

right, so we have to be, we have to be careful. So that is phi, right and again we will stop looking

at plotting the error. You understand what I am saying. So we will plot only the, we will plot only

the phi as it evolves.

We can always plot the error part later, okay. So we reset that. We have to re-compute the error

each time. So where do I have that. I have to re-compute the error each time, okay. What else?

We need  to  square  that  and  I  need  to  append  it.  That  will  make  sure.  I  think  I  have  got

everything. I have done all the steps that I need to do, okay. So programming, this is one thing I

have to repeat, we are all error prone, right. So you have to be constantly paranoid.

You have to check to make sure that everything is fine and what is happening here, well the

solution apparently is evolving. I cannot make out anything. That is the tragedy of I have gone

through. It is finished, right. Because the errors are small. So this is the other thing that I want

you to understand. So if you look at 2 graphs on the screen, if you look at 2 graphs on the screen.

And the graphs look very close, that does not say much, right because the screen, typical screen

resolution, this is like 70 dots per inch, right or 100 dots per inch. Just because 2 lines are close,

does not mean that they are close. Am I making sense. So it does not mean. So you have to, that

is the reason why I stored that error, the other error, okay. So now I will create my grace plot

where we are going to look at it, right. Remember right at the beginning I had this.
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I will quickly, I am sorry, quickly get rid of that, right. I have created my grace plot and I will

plot err, okay and as usual, it gives me, see this is the other thing. So lot of us do this plotting.

You have to always remember, always plot when you are plotting residues and so on, the range is

very large. So you need to go to a log scale, a log scale. So we will change this to a log scale.
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So I will make this very ambitiously, 1E-16, put it now on the log scale, apply that, make, oh I

should have made that say 1000 or 10,000 or something of that sort so that it  does not look

cluttered up. So it seems to have done, it seems to have done. This is only 50. It seems to have

done better than that. Maybe 1E-20. Oh, it is not bad, okay. So it is possible that, it is possible

that you get 2 identical numbers.



This is actually possible. So what has happened is after about, after about 30-40 iterations, your

answers became the exact answer on a log scale, that looks linear, looks like a straight line. So

you could try to find out what is the convergence rate. Is that fine, okay. So next time in the next

class, what we will do is we will do a demo but we will do a larger, larger, right, larger one and

see what the scale works out, okay. Is that fine? Thank you.


