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Now we want to explore see, we have seen, we can see that as the number of grid points

increases, right, that the number of iterations increases, okay, so for given CPU time for grid

point  per  iteration  the  number  of  iteration  increases  in  a  very  rapid  fashion because  the

spectral norm is so large getting closer and closer to 1, right, it is going to take for ever to

essentially can remember we got a geometric series, right.
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So if you say that xn+1 is rho J times xn or en +1 is rho J times en, right, and you want e to

go to 0, the fixed point is 0. If this is very close to 1, if it is 1 of course it is not going to get

there, if this is very close to 1, it is going to take forever for the error to go to 0, is that fine,

okay, so that is the problem, right.

So we have to think of ways by which are there ways by which we can make the code or the

iterations go faster so given that the cost the CPU time for grid point per iteration is the same

you cannot change that, you may not mind doing a little more work that is increasing that

CPU time per grid point per iteration if we are able to converge to the solution faster okay,

now this is only Jacobi.



I am not really going to sit down and work through this for Gauss-Seidel, but we did Gauss-

Seidel and it does turn out that Gauss-Seidel is marginally faster than Jacobi, right, but the

problem is that if rho Jacobi is 0.99 and rho Gauss-Seidel is 0.98, right, okay, you in fact this

is twice as fast as that, right, it is ironical, 0.99 * 0.99 gives me 0.98 essentially right so this is

in fact twice as fast as that but in an absolute sense it is no use to right it is only 0.98.

I want something that is much smaller, right, I want something that is much smaller, so we

have to come up with way by which we can do this, so what are possible ways by which we

can make the program run faster, give me suggestions, or iterations converge faster? What are

the things that we have done we have an initial guess, so you could get an improved initial

guess,  right,  clearly  see  if  you manage  to  guess  the  solution  you get  the  answer  in  one

iteration.

So clearly an improved initial guess is something that is worthwhile. Higher gird point, so

one possibility is that you somehow use, you use the initial, make an initial guess which is a

poor guess 0 everywhere on a core script, what we will call it a core script, right and use that

as an initial guess for, so you take the 10/10, you take the solution on the 10/10 there is an

initial guess for the 20/20 right, in fact you can imagine that you use 10/10 that is an initial

guess for 20/20.

Then use 20/20 as an initial guess for 40/40, right, so, you could have a hierarchy of grids we

will look at this later in the semester, there is a scheme called multi grid method which is sort

of exploits this, but as far as your concern a good initial guess would get us to the answer

faster okay, so there seems a possibility there but as I said we will do that a little later, what

else? anything else that we can do? Okay.

So one thing that we will try see all we have if you think about it for Gauss-Seidel all we

have is phi n+1 pq is 0.25 phi n p+1q you have seen me write this so many times now, phi n

p-1q n+1 + phi pq+1 n + phi pq-1 n+1 right, so this is Gauss-Seidel, now this is all we have,

we have the latest phi and we have the prior phi and improved we are using know what more

can we do, so one of the things that we can try, right.

So this sort of like, just try it out, because this is all we have to play with, is instead of calling

this phi and +1, I will call this phi star and I will write phi n +1 at pq in fact is phi n pq + phi



star pq and I want to take a liner combination or what is called a convex combination of these

2 in order to form that right, so, I will pick a parameter omega and when omega = 1, I want to

get back Gauss-Seidel.

So omega = 1 means that this should be omega, that should be 1 – omega, omega = 1 will get

me back the original equation, okay and omega = 0 there is no progress okay, so now we have

done a liner combination well what is the big deal, what have we gained by this process, it

turns out that there is an optimal value omega for which the convergence is greatly improved.

Okay there is an omega value for which it is greatly improved, there is an omega = omega qt

for which the convergence of this iteration scheme, right, is faster than the original Gauss-

Seidel is that fine, remember that this was called successive relaxation Gauss-Seidel by itself

was called successive relaxation. You can try various values of omega for Laplace equation it

turns out that omega believe it or not is >1, optimal value of omega is >1.

Okay  and  for  that  reason  it  is  called  successive  over  relaxation  or  SOR,  so  instead  of

successive relaxation which is what Gauss-Seidel was, right, because omega is >1 it is like

over relaxation,  right, successive over relaxation,  is that fine. So we have introduced this

omega  right  now you have  to  take  my word for  it  that  it  actually  improves,  it  actually

improves the convergence rate.

As I said we are not going to go through this whole analysis for it to show that it actually

improves convergence rate, we will do it in a more empirical fashion, you can actually write a

program and try it out and the question would be, right, if you do not have an expression for

omega for the optimal omega as it turns out for Laplace equation, on a unit square with the

uniform grid you can actually come up with an expression for an optimal omega.

Okay, right, there are enough books out there that will look at anything on matrix iterative

analysis by RS Varga come to mind, there are lots of books out there that will, right, give you

expression that they have already derived expressions for an optimal omega fine, but these

things work for a unit square uniform distribution,  what do we do when we are going to

actually solve problems from fluid flow equations or something that is quite complex.



There is no expression, so what you have to do is you have to find the optimal omega by

experimentation, you have to hunt for it, is that fine, the advantages once you have found it

you are able to do production runs so to speak you can make multiple runs with that optimal

omega, right, so how do we find this optimal omega, how do we do this. There are 2 possible

ways, 2 possible iterations, one of them may be better than the other we will see that.

There are 2 possible ways that you can do it, so make values of omega and right now without

an explanation I will say pick values of omega between 0 and 2.0. We will look at where this

0 and 2.0 comes from.
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Pick values of omega between 0 and 2 right say at equal intervals 0.1, 0.2, 0.3, 0.4 pick

values of omega between 0 and 2 and then you can do SOR, perform SOR iterations now

comes the critical thing, perform SOR iterations till there are 2 possibilities perform SOR

iterations till en < say 0.1 that is 1 possibly some predetermined value, okay and then you can

ask the question so this n will be a function of omega that is what we are saying that n will be

a function of omega.

You will say allow it to drop by 0.1 and this n will be a function of omega and what we hope

is that if I get omega versus n of omega versus omega we hope that we get something like

this and we know where there is a minimum, okay, there is a danger here though, I am always

vary of the setting value of 0.1, what is the danger, ya what if there is a value of omega for

which it does not converge.



You keep on running when it is going and it is going you will never get to 0.1, it never drops

away 0.1, see there is always that danger, yes I know for Laplace equation we just showed

that the iterations are going to converge right but for SOR we have not really done that, so

there is always that danger, if you are solving the Navier-Stokes equations or whatever there

is always the danger that you try to get that 0.1 drop and it just does not happen.

That the program runs for ever, right, so in all of this kind of exploratory work, I am citing

this example, I am citing this because this is the very important point that I want to make for

all exploratory work you always bound the amount of computation that you are willing to

perform, you always limit the amount of computation you are willing to perform right, so you

do not say till en is < 0.1, that is not the way to do it, right.

What you do is you say we do say 10 iterations or 100 iterations then you have limited the

number of iteration, basically going to say I am willing to do this much and no more in which

case you can then plot what would you get, what would you plot, the number of iterations is

fixed right, so this would be en versus omega. Right and now again we hope that you get

something of that sort.

We do not know, we hope that you get something of that sort we do not know, is that fine,

okay, so we can run multiple so you can take 10 values for example what I would do is I

would take 10 values I would then turn around and say that let me explore for the optimal

omega having computed this graph let me explore for the optimal omega in this gap, right

and it may turn out that I actually get something like this.

I have deliberately shown it sort of shifting to one side, why I have shown shifting towards

one side, we will see whether this actually happens, this is one of those situations that they

talk about map classes, but you have not really encountered that often, this is the situation

where you have non-uniform convergence, in fact we want non-uniform convergence, we

want for different omegas the convergence rate to be different.

Right, we are looking for a situation where the convergence is non-uniform, specifically we

are going out and looking for it. Am I making sense, we have picked a parameter and we are

hoping that  I  really, really, really  hope that  the convergence  rate  is  non-uniform,  if  it  is



uniform then we have not gained anything, right, okay, so we will hunt and we will try to

narrow down.

Now it is up to you how much effort you are willing to put in to narrow down that value, am I

making  sense  and if  the  drop is  sufficiently  fast  you should  be  able  to  get  an  order  of

magnitude speed up or more, fine, so that we will sort of look at a demo, right, and see what

happens, we will try to figure out what happens. Now we have to address one issue, so we

have SOR, we have some mechanism in algorithm by which so I do not want you to do this.

Well I want you to do this just for fun, right, if I say I do not want you to do this then you

should go and try and do it just to see what is Ramakrishna talking about why should not I do,

just try to do it just for fun but once the class, the learning process is over you do not usually

do this, what you do is you do this, you bound, you limit the amount of computation that you

do in exploratory, right.

You make sure that it cannot become unbounded okay, so right now I will remove that, so we

have an algorithm, you can find the optimal omega, why is the hunt limited in this case, in

this particular case why is it limited to 0 to 2.0, what is the reason? So let us find out okay.

Remember the matrix  A, what is this matrix A? this was A phi = b, b had the boundary

conditions, this was the discrete version of Laplace equation using central differences.

(Refer Slide Time: 16:30)

Lambda  square  phi  =  0  +  boundary  conditions  turned  out  to  be,  right,  using  central

differences  the  matrix  of  that  form and  what  was  the  structure  of  the  matrix  A,  A was



symmetric. Remember that A was symmetric, meaning A = A transpose, okay, now consider a

function that I just casually introduced well I call it phi, Q of phi is 1/2 phi transpose A phi –

phi transpose b.

You write this in the standard form because otherwise I will keep making this mistake of

replacing writing x instead of phi, if you write this in the standard form, Ax = b where x and

b are vectors, so Q of x is 1/2, put a negative sign in front of it if you want but it does not

matter, x transpose Ax – x transpose b, this x has a little tilde in front of it to indicate it is not

our coordinate.

So what is Q, given an x or given a phi it gives me a number okay, what does Q do, given an

x or given a phi depending on which equation you are looking at it gives me a number is that

okay, fine it is mapping this vector into a number into the real line okay, it is quadratic. How

do I find it is minimum, how do you find the minimum of a function? Take the gradient and

set it = 0, so what we want is grad Q and set it = 0, okay.
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You want to take grad Q and set it =0 I think maybe this is better if we use index notation to

do the gradient so that you do not get confused okay Q on xi, i is just a subscript is 1/2 xi Aij

xj – xi bi this has the summation over i and j and this has a summation over i, so the repeated

index  indicates  that  there  is  a  summation,  if  the  subscript  is  repeated  that  indicates  the

summation.



So I am not going to, so what is the gradient, dou Q/dou xk = 1/2 dou xi/dou xk Aij xj + 1/2

xi  Aij  dou xj/dou xk –dou xi/dou xk bi.  I  hope all  of  you are  familiar  with  your  index

notation. Dou xi/dou xk would be the matrix representation would be unit vector, it would be

identity matrix, but in index notation it will be delta ik. Delta ik = 1 if i = k = 0 otherwise,

okay, right, so dou x1/dou x1 is 1, dou x1/dou x2 is 0, okay dou x1/dou x3 is 0, right, dou

x2/dou x1 is 0, dou x2/dou x2 is 0.

The derivative of the thing with itself is 1, derivative of the thing with something else is 0,

okay, that is basically what it says, by itself is 1 with something else is 0, okay and remember

that repeated index means summation, so what does that mean, you can check this out, I will

let you verify this for yourself, so this gives me 1/2 Akj xj + 1/2 xi Aik – bk. Xi Aik is the

same as xj I mean if you are going to sum over the i.

Whether you sum over i or sum over j it does not make a difference so this in fact turns out to

be 1/2 Akj xj + 1/2 xj Ajk – bk and you want to set this = 0, but because A is symmetric Akj is

the same as Ajk because A is symmetric that is why that symmetry was very important, is that

fine. So what is that result in then, those 2 halves add up and you get Ax = b writing it back in

vector notation, you get Ax = b. 

So solving Ax = b is equivalent to minimizing Q of x, right when A is symmetric solving Ax

= b is equivalent to minimizing Q of x is that fine, everyone.

(Refer Slide Time: 24:27)



So we look at the problem in one dimension, it is easier to understand, we can draw figures,

right so we look at the problem in one dimension, so one dimensional equivalent of this, so

the tilde will go we will just use x because it is a scalar, so Qx in fact will be 1/2 ax squared +

bx fine, this is Q as a function of x and what does dou Q dou x or dQ dx in this case because

it is only dependent on one variable ax + b = 0.

Telling  us  that  the  minimum  is  that  corresponds  to  –b/a  from  your  to  understanding  a

quadratic equation you already know that to be a fact. Let us graph this, now in general ax

square + bx is not symmetric about the figure is not symmetric about this, but you go back

and look at your quadratic equation and you will see that what I am saying is valid in general,

right that is if I were to draw quadratic the minimum of here that is –b/a right.

Of course if I have to translate the coordinate system by some c, I would get 2 roots, about

that  minimum and independent  of  the  orientation  of  the  quadratic  those  2  roots  will  be

symmetric about that minimum, is that fine. I want you to go back and check to make sure

that  what  I  am saying that  you agree with,  so if  this  is  your xn because this  is  a scalar

equation life is very easy after all that is what you are doing, you are taking a derivative and

setting it = 0 and you will get this point immediately that is what you are doing.

You are solving for that point, this is xn+1, what I am saying is I call it x star okay, and I am

going to say that xn+1 is 1-omega times xn + omega times x star that is what I am doing, is

that fine and if I subtract out xn from here from this equation I get xn+1 –xn which is delta xn

which is the correction that I need to add to my xn to get the new iteration, yes in fact omega

times delta x star, okay.

So you just look at this, this is delta x star when omega is 1 this is the value that you get,

when omega is 0 delta x star is 0 and what is the value of Q that you get, you get the original

value, when omega is 2, you swing over to the other side symmetrically over to the other side

and the Q value is the same. For any omega between the value is 0 and 2, you will get Q

values to choose omega depending on what omega value that you choose.

We will get a value in between of x and the Q will decrease, so these iterations for omega

values between 0 and 2 will generate a sequence of Qs, Q1, Q2, Q3 so on will generate



sequence of Qs which are decreasing and they are bounded from below. So you know that

there is a limit and you are going to reach that limit, does that make sense.

As long as you pick omega values between 0 and 2, if you pick omega 2.1 it is going to take

you there, the Q is increasing, if you pick omega < 0 you are going to go here which is also

increasing, if you pick omega 0 they are not going to shift from this point and if you pick

omega 2 you are going to oscillate from one point to the other, fine, okay, right so I would

suggest that you try this out and see how it goes right, has any questions, fine, thank you.


