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We are still looking at aircraft response to inputs, and my inputs are atmospheric inputs. In the 

last class, we looked at the plunging motion of aircraft. We took sharp-edged gust in front of 

the aircraft. This is called sharp edged gust, it is like a step input to the aircraft and we found 

response in time as this (Refer Slide Time: 01:47) This tau is the time constant of the motion 

and it is depending upon the equilibrium speed and the derivative Z alpha, 
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So, now let us try to write this down in terms of aircraft other parameters, CZαQS/m. And this 

CZα is nothing but minus of CLα. The way we define the axis, Z is in the downward direction 

and lift is in the upward direction. So, what we get is m u naught over CL alpha half rho u 

naught squared into S and this is equal to 2 into W over S which is the wing loading over CL 

alpha rho u naught into g. 
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The response is going to depend upon what is the initial condition, initial condition as an we 

are trying to find out what is the acceleration at time t = 0. We are trying to plot this Δw(t) as 

function of time. We need the slope at time t = 0 and that slope is nothing but the acceleration.  

(No audio from 04:25 to 04:50) 

This is the slope of the response at time t = 0, which is also the acceleration. So, let us try to 

get some numbers for two different aircraft. 



(Refer Slide Time: 05:12) 

 

This is a solved example problem in Nelson, Nelson’s book. The units are here feet per second, 

feet squared CLα is per radian, weight W is in pounds and the aircraft are: 2 different aircraft, 

one is General Aviation - small airplane, and the other one is Jet transport. Weights are 2750 

pounds for the General Aviation aircraft and 126000 pounds for the Jet transport. (Operating) 

Speeds here are different; one case it is 125 the other case it is 225 feet per second. And the 

wing platform area in the first case is 184 square feet and other case is 2000 square feet. CLα is 

4.44 for General Aviation aircraft and 4.52 for Jet transport. What we are interested in finding 

out? What is the response actually in the 2 cases? So, we need to find out what the time constant 

is. 

Now, everything you know here from the data that is given there. Aircraft A and B. So, you 

know everything from here. You can find out what the time constant is.  In one case it is 0.7 

seconds the other one is 1.61 seconds. You also need to find out what is the acceleration at time 

t = 0; that is the maximum acceleration that you have and it is going to take you to the steady 

state, when t ,  Δw, value of Δw is going to be a constant and that is depending upon the 

amplitude of the gust. 

So, clearly whatever amplitude of the gust may be, the acceleration at time t = 0 is inversely 

proportional to this time constant. Time constant for the general aviation airplane is lower. So, 

this slope (Refer Slide Time: 10:15) or the acceleration is larger, is not it? This is for the general 

aviation airplane A, and for the airplane B this is the response. Now, we will also discuss about 



other profiles. We can have different wind profiles of this vertical gust and they could be 

periodic, or arbitrary. .... 

(Refer Slide Time: 11:18) 

 

So, we can take wg to have the form which is this, tAg sin . Any other periodic function also, 

you know how to write them as sum of various frequencies using Fourier series. If we have a 

signal which is looking like this (sawtooth wave or square wave), that also you can write as 

sum of harmonic, series, or may be .. But of course, you are not going to see such profiles? 

Wind can have any arbitrary profile and can look completely different from what you are seeing 

there. So, it could be something like this, (Refer Slide Time: 13:18); but still deterministic? 

 (Refer Slide Time: 13:14) 



 

This is a deterministic profile; we know what is the amplitude at any particular time. So, these 

are non-periodic profiles, what about aperiodic profile? You could have periodic functions 

when time period is large; large, it is going to infinity. The profile may be repeating itself after 

a very long time and that can fall into this category, aperiodic profile. 

So, we will not talk about these; we know how to find solution for this case. If I know w(t) as 

a function of time, some function, then, I am still able to find the acceleration, here you have 

to do something else and that is not what we are going to talk about. 

(Refer Slide Time: 15:05) 
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We will look at simpler cases. We will look at first aircraft response to sinusoidal gust; we are 

still looking at plunging motion. So, equation of motion is not going to change. This wg(t) is 

now tAg sin  (Refer Slide Time: 15:50). So, let us look at how this profile looks like .... . This 

frequency is 2π over the time period. You can use Laplace technique to find solution for this 

also, but here it is much simpler; you can also write down the solution directly and that is 

something like this Delta w(t) equal to Ag over square root of one plus tau square omega square 

into sine omega t minus tan inverse tau into omega. ))(tansin(
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Let us try to plug this general form of solution: tBtAtw  cossin)(  in this equation. 

tAww
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wd
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
.What you get is (Refer Slide Time:19:00) …. 

Now, collect terms common to tcos and tsin from both the sides and what you have is: tau 

A omega into cos phi minus A sin phi, that comes from these 2 terms, and there is no term 

appearing on the right hand side which is having the factor cos omega t, and corresponding to 

the sin omega t term ..... This gives me the time lag in response which it is coming here (Refer 

Slide Time: 21:35). Now, A is the amplitude of the response; let us write down A in terms of 

the parameters that are known right; time constant and omega the frequency of the gust profile 

- these are the known parameters and I want to look at the response in terms of those 

parameters. 
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So, what A is? A is Ag over .... , so that your response is .... this (Refer Slide Time: 23:36). So, 

there is a time lag involved here which depends upon the time constant and the frequency of 

the gust profile, and even the amplitude depends upon these 2 parameters. 

(Refer Slide Time: 23:59) 

 

So, when this parameter ( ) is small .... when this parameter is small, what is happening? 

This is very small, this is also small (Refer Slide Time: 24:18). So, lag is small and the 



amplitude is almost same as the amplitude of the gust. Its very close .... This is the time lag .... 

Closely following the amplitude of the gust profile with a small time lag. ... 

Look at what happens when this ( ) is large (Refer Slide Time: 26:00). When this ( ) is 

large, the amplitude is going to depend upon the magnitude of this ( ) and it is going to be 

small. So, almost flattened and having large lag in time. Let us say, this omega is fixed and we 

have control over this time constant. Time constant is what we have control over; time constant 

is related directly to the wing loading, is not it? If we go by that argument then this quantity (

 ) is going to be large for airplanes having large wing loading, and the amplitude of response 

is going to be flattened, and less amplitude as compared to the wind profile. ... 

This is a very simplistic view, this is not going to be an actual case. In actual case you can see 

all kind of winds; you can also have what is called wind shear. Wind shear - so, I am plotting 

here one profile, shear is you know is having a gradient with respect to the distance. 

(Refer Slide Time: 28:50) 

 

So, if you want to look at one such profile; let us say you are looking at ug and it is with respect 

to let us say height. So, this is how ... the horizontal wind is changing with height. Now, how 

will you deal with such cases? So, ug is somewhat like this function h
dh

du
ug  (Refer Slide 

Time: 29:55) where h is being measured from the ground. Now, how do you include this part 

in the aircraft equations of motion if you want to see the effect of this on the aircraft behavior. 



(Refer Slide Time: 30:25) 

 

So, let us write down the equation of perturbed motions in longitudinal case. .... So, this is our 

original (Refer Slide Time: 30:47) A matrix in the longitudinal motion ... and we have seen 

how we can include the gust. So, I am dropping here the control inputs; looking directly at the 

gust input. Somehow, there this Δh has to appear, otherwise, you are not going to be able to 

include that part in this A matrix right? Anything which goes into the A matrix is going to 

change the dynamic behavior. So, let us try to … 

So, we are looking at problem when aircraft is on an approach to land and then this gust is 

encountered, this wind shear profile is encountered. So, it is coming to land, the altitude is 

going to go down. So, we can write the linearized change in altitude as  0uh from 

sinVh  .... this (Refer Slide Time: 32:40). .... So you include this equation  0uh also 

in this model, because now it is this (linearized) set of equation (with A matrix) coupled with 

this equation. Why is that? Because, we have these 2 terms ( )(00   uuh ) 

appearing here (Refer Slide Time: 33:15) now, Δα and Δθ. So you can either write this w in 

terms of   ... or you can do this. 

So, let us try to include this gust; the wind shear through this equation, try to take that in into 

the A matrix and then we can look at the eigenvalues. 



(Refer Slide Time: 34:14) 

 

So, ug is, (du/dh) this Δh. That is how we have defined this wind shear. .... What is it going to 

change? Now, you have one more equation. So, we would be expecting one more eigenvalue; 

earlier we had 2 pairs of eigenvalues for this A longitudinal and both pair, a pair of complex 

conjugate eigenvalues corresponding to the short period and phugoid mode, is not it? 

Now, you are going to see another eigenvalue which is non-oscillatory, it is going to be a real 

eigenvalue. Now eigenvalues of this matrix are 2 pairs of complex conjugate eigenvalues and 

one real; real means non-oscillatory. So, we have sort of understood that change in u is not 

going to affect the short period motion and that can be seen here also. When you solve this set 

of equations it is not going to have much of effect on the short period motion, the phugoid is 

different. 

This wind shear is not having or having negligible effect on the short period mode, ..... but it 

will have an effect on the phugoid motion and if you want to plot how phugoid mode 

eigenvalues are moving in the complex plane when you change this gradient (du/dh), then what 

you get is, .... 



(Refer Slide Time: 39:01) 

 

Here I am plotting the phugoid mode eigenvalues. We are starting at this point when (du/dh) is 

0. When you start changing this gradient, this pair of eigenvalues will start moving and it 

becomes real at this point, and you want to know what is the magnitude of the gradient at this 

point, when it is lying on the imaginary axis, this (the gradient) is 0.186 per second. And this 

is for airplane B. This is likely that the phugoid mode of this aircraft will become unstable 

when you have this gradient having large value. You do not want this to happen when you are 

close to the ground, on an approach to land, you do not want this to happen. 

So, this is for the aircraft which has higher CLα and higher wing loading. For aircraft A which 

has lower CLα and also lower wing loading the profile looks something like this.... This is 

example problem 6.2 in Nelson’s book. We will stop at this point as far as this course is 

concerned. 


