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(Refer Slide Time: 00:13)  

 

So, we are looking at longitudinal perturbed motion of an airplane about an equilibrium 

flying condition, which is  …..Refer slide above and previous lecture. 

 (No audio from 00:38 to 01:00) 

This is a cruise condition, and we have already derived the perturbed equations of 

motion. 

 (No audio from 01:09 to 03:29) 

 This we have written yesterday also, only for the sake of completeness, I am writing this 

again. 



(No audio from 03:42 to 04:05) 

 And we call this matrix as A long, and this is the vector of the longitudinal perturbed 

variables.  

(No audio from 04:23 to 05:16) 

(Refer Slide Time: 04:45) 

 

And we said that, if you want to look at the free motion of the aircraft with respect to the 

perturbed variables around this equilibrium ... flight condition, then actually we are 

solving an Eigenvalue problem. So, we are solving ..… this. 

(No audio from 05:46 to 05:52) 

... and this gives me a quartic equation in lambda. So, we will get 4 Eigenvalues. 

(No audio from 06:02 to 06:48) 



(Refer Slide Time: 04:45) 

 

This quartic equation in lambda results into two pairs of complex conjugate Eigenvalues 

for this particular matrix. So, not that it will always happen, 4 Eigenvalues can be in 

different combinations. So, here what happens is now, for this particular matrix, you 

know, in the flying condition that I am taking, we get two pairs of complex conjugate 

Eigenvalues. And ... they are actually well separated in the complex plane. 

(No audio from 07:30 to 07:52) 

(Refer Slide Time: 07:45) 

 



Lambda 1 and 2 are .... corresponding to the phugoid motion, and lambda 3 and 4 are 

corresponding to the ….. 

(No audio from 08:28 to 08:35) 

 Because of this separation of the Eigenvalues in the complex plane, you know, they are 

quite far located with respect to each other; we could make some assumptions to simplify 

this equation further. Solving a quartic is actually a difficult task, it is not a not an easy 

task, if you want to do it by hand ... So, you can, what you can do is, you can use this fact 

that the Eigenvalues are well separated in the complex plane, and make some 

assumption, so that you can arrive at an expression for the short period frequency and the 

damping and the characteristic of the phugoid motion.  

So, what we did yesterday, we will assume the short period mode to be a pure pitching 

motion. So, we look at that pure ….. 

(No audio from 09:58 to 10:05) 

 Pitching motion of the aircraft about this flight condition... So, if you are doing a wind 

tunnel experiments, and want to measure the frequency and damping corresponding to 

this pitching motion, then place a model in the wind tunnel. So that you are satisfying 

this equilibrium condition. So, this X axis of the aircraft is actually aligned with the air 

flow. 

(No audio from 11:00 to 11:08) 

And this model is having only 1 degree of freedom, and that is in the pitching motion. ... 

So, there is a rod passing through this, which allows it only to have a pitching motion 

and nothing else .... And we assume that, to start with, this axis is aligned with the 

inertial frame of reference, so that any perturbation form that, delta theta, was equal to 

delta alpha, and delta theta dot which is delta q we have shown this already (())... delta 

theta will be equal to delta q even if it is not aligned, X is not aligned with the X axis of 

the inertial frame of reference. So, we arrived at the equation of motion for this pure 

pitching motion, and that was … 
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(No audio from 12:35 to 13:04) 

 Now, we are looking at the motion with respect to you know, disturbance coming from 

... the wind; not because we are giving an input to create a disturbance. So, we will look 

at the response, you know, in alpha with respect to the disturbance which is coming from 

the wind, and not because of the control input ... Delta delta e is the perturbation in 

elevator ... So, if you want to look at the free response of aircraft, then you drop this to 0 

and the homogenous part of the solution ... is this (Refer Eq(1)). 

(No audio from 13:52 to 14:10) 

So, what we have assumed here is that response, general form of the solution is 

something like this (Refer Eq(1)).. 

(Refer Slide Time: 14:39) 

 

And then, we have solved an Eigenvalue problem ..... which is this (Refer Eq(1)). 

(No audio from 14:36 to 14:55) 



 ...  So, corresponding to this motion, I can find out what frequency, and damping ratio 

are ....Refer to the slide above.  

How will the response look like? So, clearly the response is consisting of two parts .. - 

one is the amplitude which is governed by this part ... that is also a function of time ... 

and this sinusoidal part, so, it is going to be oscillatory and the amplitude should be 

damping in time, because amplitude is being governed by this particular term. Is it not? 

So, here I am assuming that the real part of the Eigenvalue is negative, the way I have 

put it here. So, when t is increasing this part is going to decrease, and that is how the 

amplitude will go on decaying, (())…Refer to the slide above 

(No audio from 16:51 to 16:57) 

 Let us look at this first. Many of these things, you can learn in many other subjects .. - 

mathematics, vibrations. But let us try to understand the flight mechanics or dynamics 

part. So, mathematics you can learn in much other courses .... So, this is governing the 

amplitude and this is the oscillatory part. So, if you want to plot the response …  

(No audio from 17:35 to 17:52) 

The response which is the perturbation, ... time response of the perturbation delta alpha, 

or time response of the perturbed variable delta alpha. So, I should not say that it is 

perturbation. So, you actually have a perturbation which is delta alpha at time t equal to 

0, which is this .... .. and the response … Refer to the slide above  
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 (2) 

Can look something like this, ... this is only a qualitative picture. So, what is happening? 

The amplitude is decaying, only because I have taken this part to be negative, otherwise 

it is going to, if this part is positive, then the amplitude is going to grow in time. 

(No audio from 19:03 to 19:11) 



 And this picture Refer to the slide above is correct with respect to our assumption that 

short period mode Eigenvalues are lying in the left half complex plane. So, this is going 

to be negative term. So, this is what the response would look like. 

(No audio from 19:38 to 20:27) 

So, this is the damped time period and there are other parameters also, which normally 

we talk about when we talk about second order system response, and those parameters 

would be, you know, time to double or half. 

(No audio from 20:50 to 21:08) 

 And that is given by ….Refer Eq(2) 

(No audio from 21:10 to 21:15) 

Or the real part of the Eigenvalues. 

(No audio from 21:18 to 21:29) 

So, because I have, its  called, because I am looking at the oscillatory response are, not 

saying is decaying or growing, you can call this as ..… 

(No audio from 21:47 to 22:24) 

 Another parameter is, number of cycles that it will take in the time to half or double the 

amplitude. 

(No audio from 22:40 to 22:58) 

This (Ncycles) is roughly equal to 
)Im(

)Re(
11.0




 

(No audio from 23:10 to 23:23) 

Or ..... 

(No audio from 23:25 to 23:52) 



We keep this here for a while now we are just looking at simpler motions. So, this was 

for pure pitching motion and we arrived at the expression for frequency and the damping. 

Now, let us look at phugoid motion, ... phugoid we said that it is an exchange of energy. 

So, you get a change in forward speed coming from somewhere, and then the aircraft 

will start going up, lose that extra energy and gain a height, so when you gained the 

height, you have actually gained extra energy compared to your equilibrium flying 

condition. So, you want to...  

(Refer Slide Time: 24:53) 

 

So, you have to remember this. Here, when you are flying you are sitting here. And now, 

there is a perturbation, and we are trying to find out if the system is stable in that 

particular equilibrium flying condition or not, your airplane. So, you have to see, if the 

ball is eventually back to this equilibrium condition or not .... And then only, we will say 

that the ball is stable in this equilibrium condition. So, similarly if you think of this 

phugoid motion, what I was saying is, you are flying along this line, constant altitude, 

you know, it is a level cruise condition and then there is an increase in forward speed. 

So, delta u naught is the equilibrium speed, and add that to this delta u. 

So, because of that, there is a increase in kinetic energy, and the only way you can 

exhaust or the aircraft can exhaust this energy is by gaining some height... So, it is 

gaining some height, and now there is an increase in the potential energy. So, eventually 

it should settle down to this, if the aircraft is stable in phugoid, is it not? 



 (No audio from 26:46 to 26:55) 

So, we assumed that there is no change in angle of attack in this motion .... 

(No audio from 27:00 to 27:18) 

So, delta alpha is 0. There is a change in forward speed, and the flight path angle will 

change then only you will get this height. You will attain this height, because of the 

disturbance. 
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(No audio from 27:44 to 27:57) 

So, there is no pitching motion involved here,.. only change in the attitude. So, earlier 

models the first one you know which Lanchester gave …Refer Eq(3) 

(No audio from 28:16 to 28:24) 

 was based on this physical understanding. So, he said that energy is conserved. So, 

whatever energy you have ….. 

(No audio from 28:43 to 28:55) 

 thats conserved. I just write...Refer Eq(3). 

(No audio from 29:03 to 29:19) 

So, finally, when ... the disturbance is being killed, you are actually trying to come down 

to the initial energy level. Which was, you know, you have a forward speed. So, kinetic 

energy at the equilibrium condition is half  m u naught squared ... and it will be flying at 

some height .... 

(No audio from 29:45 to 30:21) 

 So, if there is an increase in the kinetic energy that is being compensated by .. a decrease 

in potential energy.  



(Refer Slide Time: 30:42) 

 

0
2
0

2

0
2
00

00
2

02
1

0

00

0

20
2

1
22

2

1

)cos()()(

cos

;

;

u

g
z

Wu

g
SCuzzSgCzm

SCuuWzzm

LWzm

zzz

zguu

nph

W

LL

L

































 (4) 

So, that is what this expression means. So, balancing these two, you can find out .... this 

expression by assuming that these perturbations are small. So, I am dropping delta u 

square term .... Refer Eq(4). 

(No audio from 31:00 to 31:20) 

 Now, let us look at the equation of motion in the ... 

(No audio from 31:24 to 31:34) 

 in the normal direction .... Refer Eq(4). 

(No audio from 31:36 to 32:14) 

So I am writing down the equation of motion for this case in the normal direction. 



(No audio from 32:24 to 32:30) 

 So, this acceleration is because of imbalance of force in the vertical direction. Let us 

also try to linearize this.  

(No audio from 32:48 to 33:43) 

Now, because there is no change in angle of attack, ... there will not be any change in the 

C L ... So, this C L value is the C L at the equilibrium flight condition. 

(No audio from 33:58 to 35:20) 

....Refer Eq(4) Is this alright? 

(No audio from 35:22 to 35:30) 

Now, if you assume this theta naught also to be 0, which is my flying condition, then this 

is 1 and this angle is small. So, this becomes 1, sin theta naught is 0. So, what you have 

is this into 1,.. now there are two components if you expand this and then drop delta u 

squared because the perturbation is small. Then what you can get by doing this ..... is the 

perturbed motion in the vertical direction.  

(No audio from 36:08 to 36:57) 

So, you have an equation, now in delta z Refer Eq(4). 

(No audio from 37:01 to 37:44) 

 (Refer Slide Time: 37:05) 



 

This comes from lift equal to weight, which is true in this flying condition. 

(No audio from 37:53 to 38:01) 

So, finally, what you get is an expression for frequency form here. So, it is a second 

order equation with no damping. So, you can find an expression for the frequency of this 

motion... ..... Refer Eq(4). 

(No audio from 38:20 to 38:37) 

So, there is an assumption involved here... and that is, there is no change in angle of 

attack. There is .. no pitching motion involved in this. But what we have neglected here 

is the damping.. Somehow it has got neglected, because of the assumptions that we have 

followed. So, Lanchester could only arrive at an expression for the frequency of the 

phugoid motion, and he could not give any expression for the damping and therefore, he 

could not comment on the stability of this motion. So, if you want to look at the stability 

or dynamic stability of the motion ... around the equilibrium flying condition, then you 

have to solve an Eigenvalue problem. So, if I now use some of these physical 

assumptions and try to look at how we can simplify our linearized equations of motion, 

then we can probably be able to find out expression for frequency and damping both. 



(Refer Slide Time: 40:20) 
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So, let us look at ....Refer Eq(5) now the phugoid motion using this set of equation. And 

use the assumption that people followed. So, assumption here is that delta alpha is 0 ... 

Refer Eq(5). which also means delta w is 0.  

(No audio from 40:55 to 41:04) 

So, delta w dot is 0, delta q dot is 0. So, try to extract a simpler model form this. So, first 

equation is now with this assumption ..... Refer Eq(5). 

(No audio from 41:26 to 41:50) 

 And this will be ..… Refer Eq(5) 

(No audio from 41:52 to 42:00) 



This equation is not going to give you anything, because delta q dot is 0, delta q is 0, 

delta w is 0, and the forth one gives you ….. Refer Eq(5) 

(No audio from 42:10 to 42:26) 

 So, this I use to arrive at this. Form this equation, you can find out what is delta q, in 

terms of delta u. So, the model that you have is this .... Refer Eq(5). 

(No audio from 42:46 to 43:13) 

And solve an Eigenvalue problem now. So, you will arrive at the frequency of the 

phugoid mode, which is interestingly the same as what Lanchester obtained. Frequency 

is the same, what we achieved by doing this analysis. And the damping ratio turns out to 

be …. Refer Eq(5).  

(No audio from 43:52 to 44:22) 

 

(Refer Slide Time: 44:23) 

 

And X u is ….. 

(No audio from 44:24 to 44:32) 



 This, you know, this we have derived. If we assume C Du to be 0. Which is alright you 

know. So, a good assumption; you know if we assume that we are not accounting for the 

compressibility effect. So, the damping in phugoid is .... Refer Eq(5). 

(No audio from 45:01 to 45:26) 

So, again I am using L equal to W, equal to m g in this. So, what you see is … 

(No audio from 45:35 to 45:41) 

 The damping in phugoid is inversely proportional to L over D; what is L over D? Lift 

over drag Refer Eq(5). 

(No audio from 46:56 to 47:05) 

 Which is called aerodynamic efficiency of the aircraft. So, what it means is that if you 

have L by D ratio which is high, the damping in phugoid is low... And phugoid, it is a 

slow motion, ...you may be able to control it, because the time period involved is large. 

So, you have enough time to act, but let us say you are very close to the ground you 

know, this kind of motion is going to ... take the aircraft up and then hit the ground... It is 

very close to the ground, it can give you a bumpy ride hitting the wheel on the ground 

and so on ... The frequency is inversely proportional to the trim speed .... So, let us say ... 

you would still want to keep this L by D high. Now, what we get is this zeta P, damping 

ratio in phugoid, goes down, and let us say it is not meeting the requirement. So, there 

will be some requirement on these parameters, ... like how much values they should be, 

if it is not meeting that, then you have to go for control systems. So, in the next class we 

will look at short period approximation. 


