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(No audio from 0:13 to 0:33 min) 

Derivation of perturbed equations of motion. If you remember we said to look at dynamic 

stability of aircraft, at any particular equilibrium condition, what we need to do is, we need to 

linearise the equations of motion, and then, study the dynamics of the perturbed variables. 

See if the perturbed variables are decaying in time or not. If they all decay in time, then we 

will say that the aircraft is stable in that particular equilibrium condition. 

So, first of all, you need to define one equilibrium flight condition (or steady-state obtained 

by setting time derivatives of states to zero in Equations of motion). So, in this case we will 

take flight condition: 000000000 ;0;0;0;0,0   rqpwvuu   



  

equilibrium flight condition, you know, this is only one such flight conditions; you will have 

many, so I am taking one as a reference flight condition and trying to derive these equations. 

Let us say aircraft is flying with the speed, u equal to u naught. So, aircraft has non zero 

velocity only in the forward direction, other two velocities are 0, all rates are 0, wing level 

condition phi naught, bank angle is 0 in this reference flying condition and let us say theta is 

some theta naught. From here (slide below) you see that the angle of attack at this 

equilibrium flying condition is 0 right, because w naught is 0. This also means that alpha 

naught is 0. So, you understand what kind of flying condition it is? Theta is non 0, alpha is 0. 

So, this flying condition is actually describing, describing a longitudinal flying condition. 

And what all flying condition you know in longitudinal plane? Climb, landing and cruising. 

(Refer Slide Time: 04:12) 

 

So, let us look at those flying conditions. So, one is climb.  

(No audio from 4:20 to 4:42 min) 

So, from the local horizon, this axis XB is making an angle which is theta naught. I have 

taken this theta to be theta naught, which is the reference flying condition in the longitudinal 

plane. This angle is theta naught and alpha naught is 0. u, v, w are all along body fixed axes. 

You will have u naught in this direction, w naught is 0. So, aircraft is actually flying along its 

nose but at an angle theta naught with respect to the local horizon, so it is climbing.  

(No audio from 5:51 to 6:04 min) 



  

In this case, your flight path angle and, that is, the steady flight path angle, because we are 

talking about a steady state condition, equilibrium flying condition, is nothing but theta 

naught minus alpha naught which is theta naught, because alpha naught is 0. If we have theta 

naught also 0, then gamma naught becomes 0 and then you have a cruise condition or level 

cruise condition.  

(No audio from 7:08 to 7:34 min) 

Landing is when this flight path angle is negative. So, theta naught has to be negative for us 

because I am assuming this alpha naught to be 0 ( =  - ). So, we are looking at these three 

cases when I am assuming theta naught to be non-zero. You can also have alpha naught which 

is non zero and look at what is this quantity, theta naught minus alpha naught, to get one of 

these conditions, condition in climb is that gamma naught should be positive and that can 

happen when alpha naught is positive, but smaller than theta naught, which is positive. So, let 

us look at this (our Equilibrium flight) condition and try to linearise our non-linear aircraft 

equations of motion around this equilibrium flying condition. So, I will go one-by-one. So, 

we will start linearising the force equations first. The first in that list is u equation.  

(No audio from 9:07 to 9:28 min) 
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Now, let us take perturbations from these equilibrium conditions (Refer Eq(2)). So, I am now 

writing this u as u naught plus delta u.  

(No audio from 9:50 to 11:00)  

Where all delta quantities are perturbations in the variables. So, this equation (Refer Eq(1)) is 

for the aircraft motion along the X-axis, and is true for any condition, whether it is a 

perturbed condition or the equilibrium flying condition. Is it not? This is the equation of 

motion, you know, for the aircraft motion in any condition. 

Now, what we are trying to do is, we are trying to derive the perturbed equations of motion. 

So, I am going to substitute for u, u naught plus delta u, the perturbed condition from the 

equilibrium flying condition. Let us do that and see what we get. 

  )sin()())(())(( 0000000   mgXXvvrrwwqquum   (3) 

(No audio from 12:08 to 12:59)  

The perturbed motion is because of this change in force. From somewhere we are getting 

input, so that we are getting into the perturbed condition. So, we will have to see all that. We 

are right now looking, this is the force, which is going to give me disturbed motion. We will 

see where this force is coming from. ..... And now, let us try to write this equation in the 

expanded form.  
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(No audio from 14:01 to 15:50)  

So, let us also make another assumption and that is let us say these perturbations are small. 
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(No audio from 16:01 to 16:17) 

(Refer Eq(4)) When we say that, this is 1, sin delta theta is delta theta, and some of these 

terms will disappear, when we are multiplying two variables which are small, then they are 

negligible as compared to other terms. So, we can drop them. So, this is small and that is why 

we are dropping it.  

(No audio from 16:57 to 17:48) 

So, that is one thing. Now, look at the equilibrium flying condition and see if we can drop 

further terms from here. So, this is 0, because of the equilibrium flying condition that we 

have taken.  
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(No audio from 18:13 to 18:29) So, what we have finally is this ....(Refer Eq(5)). 

(No audio from 18:33 to 19:18) 



  

So, let us see now. Let us compare this equation with this. Now, this equation is satisfied at 

any condition (Refer (Eq(1)). So, look at the equilibrium condition when you have m u 

naught dot equal to X naught minus m g sin theta naught. Other variables are 0. You could 

have kept them here and still cancel them from both the sides. Is it not? So, this is also 

satisfied. 

So, we can drop further these three terms from this equation. So, finally what you get is this 

(Refer Eq(5)).  

(No audio from 20:24 to 20:45) 

Now, let us try to expand this (X), that is going to be, this force is going to be a function of 

velocity as you said and also of the control inputs. So, let us try to expand this now. ....Refer 

Eq(6) 
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(No audio from 20:59 to 21:28) 

Anything else? In general, if you are talking about the post-stall flight region, then these 

forces are also going to be functions of many other non-longitudinal variables, but we are 

talking about pre-stall flights. So, there this force is going to be, this force is the sum of 

aerodynamic and propulsive forces along the body fixed X-axis. So, it is not going to be a 

function of the non-longitudinal variables in the pre-stall flight regime.  

(No audio from 22:18 to 22:45) 

So, these are perturbations in control inputs (e T) from the reference condition. This 

(T) is the perturbation in the throttle from the reference flying condition, perturbation in the 

elevator from the reference condition (e), and these derivatives have to be evaluated at the 

equilibrium flying condition dou X by dou v, that is what I told you. We are looking at pre-

stall flight where X will not depend upon the side velocity. If it affects, you should include 

that. You can have another term here.  

(No audio from 23:38 to 23:48) 



  

We will assume that this force is not being affected by the side velocity, perturbation in side 

velocity in the pre-stall flight regime.  

(No audio from 23:59 to 24:43) 
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This (Eq(6,7)) is the first perturbed equation along the body fixed X-axis. So, we have to 

repeat this exercise, you know, for all the equations. There is another way you can do this. 

Use Taylor series expansion. So, let us see how we can do that. So, I am re-writing this 

equation as .....  
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(No audio from 25:21 to 26:41) 

You know this? So if you have a function which is x dot equal to f 1, and this f 1 is a function 

of several other variables, then this delta x dot is ....  and so on. 

(No audio from 27:03 to 27:13) 

And you have to evaluate these derivatives at the equilibrium condition. So, my equilibrium 

condition is denoted by this subscript '0'. 

(No audio from 27:47 to 28:42) 
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So, this is cos theta naught, and we can drop these terms, because their values at the 

equilibrium flying condition is 0. So, what you get is the same equation as Eq(7).  

(No audio from 29:06 to 29:34) 

So, 1 and 2 are same.  

(No audio from 29:36 to 30:04) 

Is this alright? So, if you have understood this, we can go on writing other perturbed 

equations. 

(No audio from 30:15 to 30:40) 



  

(Refer Slide Time: 30:15)  

 

So, this is the force equation in v ..... 

(No audio from 30:42 to 31:03) 

And now, you can repeat this procedure and we can .... write down the final form.  
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(No audio from 31:22 to 31:42) 

Again, we are assuming here that the side force is not changed much because of the aileron 

deflection. We have to look at the, the order of magnitude, and then if the order of magnitude 

is large, then you have to keep that particular term. If it is very small as compared to other 

terms, then you can drop them. 

(No audio from 32:10 to 32:40) 

Remember, whatever this derivative may be, this has to be evaluated at the equilibrium 

condition. Is it not? 

(No audio from 32:52 to 34:13) 



  

(Refer Slide Time: 33:02) 

 

The force in the Z direction is also a function of the pitch rate and this quantity is not small as 

compared to other terms in the equation. That is why we have to retain this also (Refer 

Eq(11)).  

qugZeZwZqZwZuZw TTewqwu  00cos     (11) 

(No audio from 34:30 to 34:47) 

This force can also change because of the acceleration in the Z direction and this term is may 

not be small.  

(No audio from 35:04 to 36:49) 

Any question here? (()) How do you get this? 

(No audio from 37:00 to 37:41) 



  

(Refer Slide Time: 37:05) 

 

So, let me just explain you what you, giving a general example, the way we started with. So, 

you have the equations written in this form where x is the vector of state variables in our case 

u, v, w, p, q, r, phi and theta.  

(No audio from 38:14 to 38:23) 

Now, what I am saying is, we have to keep the derivatives which are not insignificant. You 

can have w dot also as a variable. In that case, we can write it in this form (Refer Eq(11)).  

(No audio from 39:00 to 39:15) 

Let us say I say that this delta w dot is the normal acceleration and that normal acceleration is 

a state variable. I am only trying to expand this force. This force can be a function of these 

variables. It can also be a function of this normal acceleration. (()) We will come to that. We 

will look at these derivatives. The important derivatives we will look at them separately. 



  

(Refer Slide Time: 40:36) 

 

See, you think I should carry out this?  

(No audio from 40:13 to 40:19) 

Now, let us look at the moment equations.  

(No audio from 40:25 to 41:55) 
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This moment is a function of sideslip, rolling moment we are talking about. It is going to be a 

function of the side velocity or sideslip angle, roll, rate, yaw rate, aileron deflection, rudder 

deflection. So, this can be expanded now (Refer Eq(12)).  

(No audio from 42:25 to 43:08) 

It can be expanded as this. So, here the q naught is 0, r naught is also 0, so delta p dot is .... .  



  

(No audio from 43:23 to 44:28) 

Is this all right?  (()) 

(Refer Slide Time: 44:06) 

 

Here (Refer Eq(12)), this is L delta r, delta delta r. Remember, we are talking about 

perturbations from the equilibrium condition, so you can be flying with non 0 delta r. So, 

delta r naught can be non zero, but here, when we are deriving the perturbed equations of 

motion, you are talking about perturbation from that trim condition. So, we will write other 

four perturbed equations in the next class. 


