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So what we the last topic that we are going to take up in this course is detonations we will spend

some time talking about detonation waves the structure of how we have proceeded is as follows

we went through the rankine Hugoniot at some stage where we pointed out that the wrong kind

Hugoniot  they did the you Hugoniot  curve breaks up into the upper branch in the lower branch

and the lower branch corresponds to the deflagration of waves and the upper branch correspond

to the detonation branch.

And would they be then we then said we will now focus on deflagration right now the major

problem that  we had with  the rankine  Hugoniot  was that  we were assuming that  there  is  a

inherent flame speed associated with it with which we could construct the railway line because

the Rayleigh line the slope of the railway line is equal to _M 0 squared where M0 is the mass

flux of the flow that is passing through the wave and that relates.

To the flame speed basically therefore by constructing a railway line we presume that we know

what is it is slope and that that means we know what is the wave speed but in reality that is that

turned out to be the haven  value in the case of deliberations and we had to get into the structure

of the deflagration wave in order to try to find out the flame speed there and so a similar situation

remains for detonations as well so we will have to think about that at the moment so but basically

I want to do the bottom line.

 I mean odd or the or the commonality or the underlying thing about these things is we are

primarily looking at premix reactants right so that was the framework in which we did this so



from doing laminar deflagration which is essentially plain premix flames we then moved on to

diffusion flames and so on not strictly in the framework of the rankine Hugoniot relations but

then me now going through all those things.

We now come back to the detonation part of it and then we ask the first question what is the

detonation wave speed right in doing this we recognize that we noticed at the time that in general

even if you had what is called as strong detonations they approach the sharp and detonation

unless  the system is  over  driven and weak detonations  seldom occurred  because  it  required

highly reactive mixtures for the reactions.

To occur  in  such a  high  rates  that  you have  the  lot  of  products  that  the  reactions  that  are

following  the  wave  should  happen  at  such  high  speed  that  when  the  wave  propagates  at

supersonic speeds you now have the products that are following at supersonic speeds as well

although not as fast as the waves themselves this is the wave itself so we were not necessarily

concerned with weak detonations and we notice that stronger donations tend to become sharp

and yoga detonations.

Therefore it  makes sense for us to confine our attention to the wave speed of the Chapman

joogay detonation wave.
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So that is what we will do now in doing this unlike in the case of deflagration were we notice

that the wave speed is actually an Eigen value of a I glen value problem looking at the structure

of the wave where we have to do the mass and energy balances across the or through the wave

rather here we notice that the deflagration wave sorry.

They did the detonation wave is traveling at supersonic speeds so it quite does not really know

what's  ahead  of  it  the  information  does  not  propagate  upstream therefore  in  a  it  should  be

possible for us to actually try to get the wave speed without having to get into the structure so in

the  case  of  delegations  we had this  heat  conduction  that  was happening upstream from the

reaction zone that was heating up the reactants whereas in the case of detonation wave.

 The detonation wave keeps going and it does not really know what's ahead therefore we cannot

really hope to actually look at the structure in order to resolve the wave speed so there must be a

trick it is involved somewhere here and I will highlight this trick as we go along but we will

pretend that for the moment that we do not have to necessarily go through the structure we will

just keep going looking at the kind of Franken him analysis similar.



 To rankine Hugoniot alibis and then see where we can try to exploit the nature of detonation to

look for the wave speed so for the Chapman youguet a or particularly sharp in Chapman youguet

detonation or in this context the product speed is basically the speed of sound like for example in

a  in  a  normal  shock where  the  downstream velocity  is  always subsonic when the  upstream

velocity is supersonic.

In the case of a Chapman you gave wave the downstream velocity is always sonic locally at the

speed of sound so the speed of sound behind the detonation wave this we use the same notation

as what we had before a ∞ equals square root partial derivative of pressure of the downstream

pressure  with  respect  to  the  downstream  density  at  constant  entropy  constant  downstream

entropy now here U ∞ equals A∞ at the upper CJ point in the urbane curve.

So we have we m0 equals ρ 0 u equals β ∞ u∞ which is now = ρ ∞ a∞ so from u0 = 1 over ρ 0 ∞

∞ is a equals square root of γ ∞,R ∞,t ∞ so you not equal to ρ ∞ over ρ 0 square root of γ A ∞ or

T∞  right so let us call  this relationship number one so here what the problem is you not a

essentially what you are looking for this is very similar to what we did for the deflagration okay

that is related to ρ0 also very similar to deliberations because.

They are also we were actually trying to look for are relationship for M0 versus the rest and M0

Ρ u0 but here what we what we now find see this is the problem what we find is the wave speed

which is essentially in a flame fixed coordinate system or a way fixed coordinate system it is

essentially U0 depends on the downstream quantities write ρ ∞ ∞ R∞ and T ∞ and that is a

problem so we now have to try to find out if we can evaluate those quantities right.
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So  note  that  the  wave  speed  which  is  essentially  U0 depends  on  depends  on  the  burn  gas

properties.
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As a matter of fact if we also know that for example in the lower CJ point as well U∞ =A∞ right

and M0 being =0 U0 =ρ ∞ U∞ valid regardless of where we are on the urbane  curve right so if

you now plug in U ∞ =a∞ that is valid for both upper CJ and lower CJ points so strictly speaking

this could be a CJ detonation wave or CJ deflagration wave at this moment right so we have not

quite strictly speaking exploited the fact that we are particularly interested in a detonation wave

but this at this stage.

So keep that in mind and look for where we are doing this so what we want to now try to do is to

explore or chase the evaluations   need evaluation of the burn gas properties so let us  try to do

that one itself implies that ρ0 square do not squared =M0 square =∞ p ∞you can actually get this

quite easily now in the road rail a line we have P ∞_ P naught divided by 1over ρ _ 1 over ρ 0 =_

M0 squared and then we plug this in here right so from this we can get 1 over ρ 0t_1 over ρ ∞ we

swap this so that we can get rid.

Of the negative sign in the M0 ∞ that sets coming from here right now let us call this 2 and this

will be pretty interesting and important at some stage in the future from  now on what we are

going to do something else that that could be a little bit boring all right but we will come back to



this and say well we can forget about everything that I said which is kind of complicated and

boring but we can just go back and look at this and then see.

 If we can exploit something here so little let me just go through whatever needs to be gone

through and then we will come back to this so here what we want to do is multiply about by p 0

+ p ∞ so we have a p0 + P∞ times 1 over ρ 0_ 1 over ρ ∞ equals we now get p ∞ squared _ p 0

square divided by α ∞ T ∞ so why did we do this is where we are now going to make the point

that we are looking at a detonation wave we already made the point.

That we are looking at a Chapman and you give wave right and we pretend that we do doing

detonation but not quite yet until now right so what we are what we want to do is to notice that

across the detonation wave the pressure increases manifold right so many times and therefore P

∞ is larger than P 0 quite larger than peanut actually right now what we do not want to do at this

stage at this step is to say that p ∞  is much larger than p 0 so I use their the words carefully there

is aid quite larger than not really much larger than.

So if you now say quite larger than right then we can we can then easily say that p ∞squared is

much larger than peanut okay p0 square so what we are going to right now do is to say suppose

the  ∞  squared  is  much  larger  than  p0  square  this  is  much  less  of  an  approximation  when

compared to directly supposing that p∞ itself is much larger than p 0 we will find is this is not

going to really help us directly it is going to lead us to go into some circles and then we will

come up with a iterative scheme of solving.

This right so that is the boring part that I was just talking about and then we go through all that

and then I am going to come back and say wait for an engineering purpose can I relax and say I

do not want to actually x p 0+ p∞ here and then get this peanut squared to be considered to be

much larger than p0 squared directly into can I  say if p 0t its p∞ itself it is much greater than V 0

again instead of looking at the squares I will do that quite some time later okay but this is the

point where we are beginning to talk about detention.



 So it is essentially the idea and this allows us to get around the structure of the wave okay by

doing by recognizing this we do not have too bothered about getting the structure tubes unlike

we did  in  the  definition  but  they  are  the  physics  demonic  it  okay the  upstream conduction

demands that we consider the structure of the wave here we did not have to do that instead we

actually short-circuited by going through this approximation so now let us suppose.

 We will now continue to assume that p∞ squared is much greater than p0 squared and that is

going to imply.
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That the p naught divided by ρ 0 _V 0 divided by ρ∞ +∞ divided by ρ0 _P ∞ divided by ρ∞ that

is opening up the speared theses here that is = P ∞ divided by α ∞ ρ ∞.
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That  means we have got rid  of the P 0t squared so we remain with p∞ squared one of the

painfully is there gets cancelled with the one at the bottom. So you get money this or the right

hand side and so it use the equation of state or not T0 _ρ0 divided by ρ∞ or not T 0ρ  ∞ by ρ 0R

∞ T ∞_ R ∞teen it means wherever we have a p ∞ by ρ ∞ we use in our  ∞ we not run out p 0

over ρ 0we use or not he not but when you have this next kind of quotient.

 We now take the ratios of densities and then use the equation of state wherever applicable and

that's going to mean that on the right hand side you also write R∞ to ∞ divided by α ∞ so

multiply this is the kind of boring part I was talking about so it may basically some algebra that

we go through do not R∞ T ∞and that is going to get you a quadratic you might recall doing

something like this with the urbane curve and they rankine are they on the Rayleigh line put

together earlier.

On to get the upstream Mach numbers but here our goal is slightly different so we get ρ 0 ∞bro

not the whole square _ 1 over α ∞+1 _R 0 T0 divided by R∞T ∞ times ρ ∞over ρ 0 _R 0T 0

divided by R∞ T∞ equal to 0 let us call this 3 now this is a quadratic in ρ ∞ over ρ not right now

but you see what about are the coefficients the coefficients involves α R ∞ or not  T 0R∞T ∞



right so those are the coefficients sir so this solving this will give ρ ∞ you overrule not in terms

of α R ∞ or not t 0 R∞ right.

So course we are still chasing that means we wanted to go back here and then say can I get ρ ∞

well you can but it's going to be in terms α ∞ R∞ T∞  we need to know those things as well right

so that is okay so we are not introducing anything new we are trying to count only the old things

so that is all right so we can easily now so also use a p∞ p ∞ is related to a ρ ∞ a Byron R and T

∞ by essentially the ratio of equations of equations of state at the product and reactant conditions

(Refer Slide Time: 21:01)

 So that is p ∞ =0 divided by ρ∞ not t 0 divided by R∞ T∞ times P. So let us call this for the

reason.
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We number these equations is we will now go through an iterative procedure iterative solution

procedure the first thing we do is assume a p ∞ we do not know what p ∞is but let us assume it

and yellow make a mistake right p =ρ  RT so we need to have p ∞ equals the right I want to make

sure I do not make that mistake but I did so zoom to ∞three now next thing we do is calculate the

equilibrium composition why I ∞ based on p ∞  and t ∞ let us assume that is yeah once you get

to step 3 you have a pain Florien T ∞ to work with.

Which you now use the aquarium composition there and then so once you do this you know use

the energy balance and to check whether this is going to resolve things so check for infinitely

from the he go near relation in fact we have the mass balance here and the railway line is a

combination of statements of mass conservation and momentum conservation that is what we

have been working with we have no used energy conservation yet so we will try to now try to use

that as a check right.

So we will we will try to use the he go near relation we had h ∞_ H = one-half 1 over ρ∞ + 1

over ρ∞ times p ∞ _ p 0 and which means the sensible and therapy part of it HS ∞_h is not so

what we do is we now split this in a sensible enthalpy and heat of formation so the difference is



in the heat  of formation of the products and reactants altogether is the heat release right so that is

Q so that would be Q +one half 1 over ρ ∞ + 1 over ρ 0 times P ∞ _ P 0here then.

We want to use the internal energy that is about HS a sensible enthalpy is equal to internal energy

+ P over ρ there for HS ∞ _H =e∞ -+p∞  over ρ∞ _p a not over ρ0 okay let us now substitute this

of the substitute this.
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 In the he go no then we get ∞_Z 0 = one-half 1 over ρ ∞+ 1 over ρ 0times P ∞_ P 0_ P ready

divided by ρ ∞+ P 0 divided by ρ 0 + Q so simplify this you have some opportunity to cancel

things therefore we get E∞_ E0+ Q + one-half p ∞ + P 0 times 1 over ρ 0 _ 1 over ρ∞ so here we

can now go back and use this relationship number two and what you get you get a p ∞+ P 0over

here that is what we try to multiply but then if you now use 1 over ρ∞ know 0 - 1 over ρ ∞ as

this you naturally get a product of P ∞+V 0 times P ∞_ P 0 which is they need to p∞  squared _ P

0 square right sousing to ∞_E 0=one-half p ∞ squared _ P 0 squared divided by α∞P.

And fill the ρ∞+ Q here again you now try to approximate saying p ∞ squared it is much greater

than P 0 square and therefore that is going to need us to e ∞_e 0that is equal to one-half p ∞



divided by α ∞ρ ∞+ Q or +Q and P ∞ over ρ ∞ is 0 ∞T ∞therefore this is R∞ T∞  divided by 2 α

∞+Q which is a V ∞  =E0 + R ∞ T ∞ divided by α X will be + Q so if you call this five then we

have assumed a T ∞  so the equilibrium composition is also not going to give you a A α∞ and R∞

right.

So now you have for the assumed value of P ∞ and T ∞ you get α∞ and R∞ with which you can

check right so check if the above equation is satisfied right so once you know that this is satisfied

you are okay with the choice of T ∞ that you made instep two all right of course you still have

the outer loop of having assumed α p ∞ so once you do this solve for so this is there is a step

three that we have just finished.
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Step 4 would be solved for ρ∞ over ρ not using the quadratic equation that is number three right

and step 5 would be fine p ∞ from for that is here right then6 check if this is the same as assumed

right. So whenever we say check we would like to do too we would like to think about two

things one it is always but within a certain tolerance okay so you're not going to exactly match

maybe you can match but to the first decimal place second decimal place third decimal place or



as a percentage whatever it is you want it you want to hold to a tolerance and if it is satisfied then

you proceed.

 If not then you have to repeat the inner loop right so in this case for example you now assume T

∞ and then you go through this check and if you are satisfied within the tolerance you proceed if

you are not satisfied within the tolerance right then you assume a different T ∞ in step to go

through the check for the assume P∞ and then once you have converged on a T ∞ then you

proceed this step for step π  and then check so in your check of course it is within a tolerance and

within the tolerance.

If you have not satisfied then you have to go back and change your p ∞ go through the whole

thing again right so you do you do this of course it is a bit of a tedious process so once you do

this so finally step 7 would be once p ∞  ρ∞ T ∞ and R∞ or finalized use one to find you not that

is almost like the post-processing right now of course we find that this is kind of like a loop

within a loop and it is going to take a while for you to converge.
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So instead of going through this the next best thing that you can do as I pointed out earlier is do

not push yourself as you p ∞ squared is much greater than p 0 square directly say can I  adopt p

∞ itself as much greater than p 0 right so a good approximation is it strictly use p ∞ itself as

much greater than p 0 in to right that is what I that is what I said we will go back to so that

implies 1 over ρ0_1 over ρ∞= the earlier had p ∞ squared _P 0 square divided by α P ∞ ρ ∞ we

threw away p 0 squared in preference to p ∞ squared cancel one of those paint-filled ease at the

top at one at the bottom and so on but now.

We have a p ∞_p 0 divided by α p∞ ρ∞ p 0 is thrown away in comparison with T∞ the painfully

directly gets cancelled with the one at the bottom so you are left with only one over α ∞through

∞ right so this means that ρ ∞ over ρ not is simply =α ∞+ one divided by government philly HS

∞ _ 
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HS not it is not = Q +one-half p ∞ _ p 0 times 1over ρ0+1 over ρ∞ in fact we have we have just

written it here still around so here what we want to do is to this is something that we did during

the racking Hugo new days. That is we want to write this as α∞ over α∞_1 p ∞ over ρ ∞_α0 t

divided by α0_1 p 0 over ρ not the way we get this is we now say hedges ∞ is CP ∞ t ∞ see p ∞



is α ∞ α ∞ or ∞ divided by α ∞ _1 and then he had a t ∞ or ∞ to ∞ is p ∞ divided by ρ∞ similarly

for in not conditions so if you now do this and then the next step you do is you notice that you

are not going to have a big difference in α ∞ and α not between the two okay to think about this α

is basically ratio of specific heats ratio of specific heats depends on.

Whether the gases are monatomic or diatomic or polyatomic whether it is linear polyatomic or

non-linear polyatomic and so on now if it is monatomic you are going to have something like so

if it is diatomic you are going to have something like 1.4 if it is mono atomic it is going to be like

1.6 67 and so on and if it is polyatomic you may have something less than 1.4 right 1.3 so all

these things are around of the order of 1 if you know think about orders of magnitudes all of the

order of 1 and mostly for mixtures of gases.

In both cases it is going to be in general I polyatomic system and so we expect that we do not

even have this variation right so we do not expect a big difference between α ∞ divided by α in _

1 and α n0 divided by α 0_1 so for an order of magnitude point of view we notice that just like

how we now threw away p0 itself as opposed to p ∞ right we now say let us get rid of this entire

term all right so if you now do and similarly you can do.

It here as well in preference to p∞ so wherever we find pain-free _p0 kind of thing you know get

rid of this so with this we now say α ∞divided by γ∞ _1 times p ∞ _one half p ∞  times ρ∞

divided by ρ naught +  one equals Ρ ∞  q some mores amplification well basically you can pull

out p ∞  all right and then plug gear ρ ∞  you over ρ 0 as α ∞  + one divided by α ∞  here and

pull this p ∞  out you had something in terms of γ ∞  here there is also going to be in terms of γ∞

so you'll now have one big function that is safe that is γ∞  that's in terms of γ∞.

So quickly going through that /come on 20_ 1 _ half  ∞  + one divided by γ ∞  + one equal to Ρ

∞ quick q and then you put things together so we get pay ∞  times γ ∞  + 1 divided by 2 γ∞

times γ∞  _ 1equals Ρ ∞  q but then keep in mind that this itself after the simplification still has

luminance of going to leave over Ρ not right so and this Ρ ∞  then gets cancelled with that right

so then you get P∞  =to 2 q 2 q ρ not times ∞  _ 1 now if you did not make a big fuss about



having to find γ ∞  of course you can assume equilibrium find the composition and soon but the

idea was you do not go through all that right that means you.

 Now say let us not worry about the variation of α between reactants and products you assume

some α that is common and unknown then you directly get a value for P ∞  just knowing the heat

release and the density of the reactants right the interesting thing here is Q is like joules per kg

and Ρ not as kilograms per meter cube so Ρ naught Q is like joules per meter cubed so the is

basically something like a volumetric heat release of the reactants right that means the denser the

reactants greater the pressure all right the means denser.

The reactants it  compacts  more heat within it  k per unit  volume and that  means greater the

downstream pressure infect we have been exploiting the notion that the pressure itself is much

greater than the initial pressure and that is really the hallmark of detonation waves so what's

actually great about detonation waves is not as much about the km/s kind of velocities but what

is what is utilized in detonation wave in terms of applications is the pressure.

 So you have this huge pressure buildup behind the wave and as the wave propagates it now has

rarefaction that follows it which sucks everything in and then destroys the materials that it passes

through or the or the matter that it passes through so here what we are basically seeing is if you

were are actually talking about gases all over but if you now think about reactants that were

actually in solid form and correspondingly.

 You gave rise to some heat okay because of the gas evaporating and then reacting sorry the solid

evaporating and giving rise to the interpretation wave in the gas phase alright then the volumetric

heat capacity heat of the of the reactants is a lot higher and therefore solid detonation reactants

give rise to much higher increase in pressures right so you get you get this physically meaningful

relationship from making this approximation here and when proceeding instead of getting stuck

in this iterative loop so finally.
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 So now you want to go back to one and say U0=1over Ρ 0 square root of γ ∞  p ∞ road finery

that can be written as 1over Ρ 0 square root of α∞  p ∞  Ρ ∞  over Ρ 0times Ρ0 and therefore we

can write this s still we got their own on there and so we can write this as square root of α∞  p ∞

divided by Ρ 0timesγ ∞  + one divided by γ  ∞  cancel the γ ∞ equal to γ ∞  + one and so the γ∞

gets cancelled and p∞  divided by ρ0  is to q times γ_ one that is equal to square root of two go ∞

squared _ one times Q so what we can see is now that p ∞  goes ask you but you knock goes is

square root of Q.

So you do not quite get you know the same effect out of the heat release and let us just push this

a little bit more and we are pretty much there to see the result here so since P ∞  equals 2 q ΡΡ 0

times α ∞ _ 1p ∞  divided by ρ ∞  is equal to 2 q mu 0 divided by ρ∞  times α ∞ _ 1then

whenever you see a row in fillory over ρ not plug in a row ∞ α ∞  + one divided by α∞  so you

say to q times α∞  α energy_ 1 / comment will be + 1 and that gives you q equal to Sophie∞

over Ρ ∞  to start with is what is this face this is nothing but R ∞  T ∞  which is are you T∞

divided by W ∞  right.



So from here we can get q trying to put these two together right q is are you T∞  divided by W ∞

times one-half γ ∞  + one divided by α ∞  times γ∞ minus one so from here what we can see is Q

goes as the ∞  divided by W∞  and then putting these two together  right we have you not

essentially goes as Tina sorry T∞  divided by W ∞  De Hoff right now for those of us who are

familiar with rocket propulsion we get a very similar result for the exit velocity of the rocket

from a guest dynamic nozzle undergoing supplied by combustion gases.

 At a temperature T∞  a molecular weight of gases being w ∞  right and this is what translates to

something called a specific impulse now if you detonation engine pulse detonation engine the

detonation wave keeps on propagating out and the this at the speed and what we find is that the

speed of  the  wave  is  also  directly  proportional  to  t  ∞  divided  by W∞  loop of  the  same

dependence  so  effectively  a  pulse  detonation  rocket  engine  is  not  going  to  have  a  specific

impulse that is very two different from a ordinary chemical rocket so there is no way of beating

around nature in this case right so you are pretty much going to get the same result as we can see

from this you.
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