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So these stopped here, let me just go over just of what we have done so far essentially we have

make it making aflame sheet assumption in this problem of co flowing fill an oxidizer at the

same velocity and so the flame sheet assumption basically is a infinite trait chemistry assumption

or infinite kinetics and that basically boils down to the mixing problem.
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And we adopt this notion called the mixed is burnt approach as far as this solution is concerned,

so if you now solve only the mixing problem all we need to do is to locate the struggle stanchion

metric  surface in order to get the flame shape,  so we just  take the fuel and oxidizer species



conservation equations in the Schvab Zel dovich formulation and form the α corresponding to

them for a one-step chemistry of η FF + η 0 gives p and then of course you also manipulate the

right-hand side to look the same in these two equations and for α and then you now have the

Schvab  Zel  dovich  coupling  function  β  that  is  formed  as  α  F  –  α  0  and  then  you  get  a

homogeneous linear equation for beta and if you now unwrap this vector equation sorry vector

calculus equation in terms of vector in this equation in terms are called vector identities  in terms

of cylindrical polar coordinates and then we also have the fourth assumption that we listed which

is to neglect axial diffusion in preference to radial diffusion.

Then we are left with these two terms so these two terms basically signify the balance between

axial convection and radial diffusion, so essentially the governing equation boils down to this

particular balance that we have been discussing that dictates the flame shape we will talk about

pretty soon we will talk about what is the consequence of retaining axial diffusion as well but

just proceed this equation now is first-order in zer than to second order and are that means it

requires one boundary condition and Z and two boundary conditions in our and more moreover

sciences the boundary conditions that they can supply or at least two at most two one order less

than the leading order.

So the reading order here is second order or that means we can supply boundary conditions in the

value of β or its derivative its first derivative and the first derivative in β signifies diffusion mass

flux  because  if  you now go back and see β is  α  F -  α  0 α are  basically  why ice  with  the

normalization therefore a derivative in the first derivative and β will essentially boil down to

indicating a first derivative in Y I which essentially means diffusion mass flux in terms of the

Fick’s  law to  which  we  have  reduced  to  which  formulation  and  since  the  desert  boundary

condition is only to first order we can supply boundary conditions only in the value we can

supply boundary conditions in the derivative this is going to be pretty important for us to think

about when we start looking at retaining axial diffusion sometime later.

But at this stage we are recognizing that we need to have two boundary conditions either in the

value or derivative for beta in our a tool to boundaries of or which are or equal to 0 and r = B or r

= 0 is the center line r = B is the outer duct radius and in both the cases it turns out of course this



is a Norman boundary condition required for symmetry and this is a no mass flux penetrating the

wall because the wall is say rigid wall its owner it is a non-porous wall and you're not looking at

any penetration of mass by diffusion there therefore these are the boundary conditions and we

can look at boundary conditions the first derivative.

Now if you now have these two boundaries  subjected to Norman boundary conditions we have

to make sure that the other boundary that we are looking at which is z = zero for the z boundary

is provided with the district condition and that is what is actually required you cannot provide a

Norman boundary condition but when you now think about a axial diffusion taking an account

you will also have a second-order insert which will admit two boundary conditions up to first

order in beta but at that stage we cannot give normal boundary conditions everywhere, then you

will have a non unique solution therefore we will think about the kind of boundary conditions

admitted in that case next.

But at this stage we can only provide duration a boundary conditions for this and in β so need

1bc in z at z = 0, so at z = 0 which is say directly data which should be in the form of digital data,

so z = 0 we have to now say what should be the value of beta right, so we now have to go back

and look at how to form our β is α F - α o right, and what we find is if you are now looking at z =

0 that is at the that the same plane as the lip of the inner duct where the fuel is coming in and

beginning to mix with the oxidizer from the outer duct.

So and we have to now look at how this the β should span from 0 to b across R = a, so what we

find is between 0 R = 0 and r = a you have only fuel at a mass fraction of YF 0 not and you do

not have any oxidizer therefore your y 0 is 0 and you are therefore α 0 is 0.
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So if α o is 0 you only or left with α F, so β would be Y F 0 / w f η F right, with a negative sign

because you have a η I single Prime η F and you have a denominator  ηI’’  -  η’ ηI’’ is 0 so you

have a negative sign over here therefore we are going to get a negative sign there this is for 0 less

than or less than a.

Now if you now go back to what happens between r = a to R = B you have all oxidizer that

means you have a YO0 over here but you have Y F 0 is 0 right, so if you now go back and see

your α 0 with the α o0 and your α, α F would be 0 all right so if you now plug α F = 0 and αo =

αo0 and αo0 is nothing but Yo0 / w η / negative sign and then you have a negative sign here as

well right, so therefore you will get a + y o0 / wo η o this is for r a  r  B.˂ ˂
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So what this really means is you have now a jump in the value of β at or equal to a all right it is

going to continuous but that is exactly what the mixing problem is all about you have all fuels on

one side you have all oxidizer on the other side and they are now going to make intermix right so

and the mixing is essentially by diffusion and diffusion is essentially a transport process and like

any other transport phenomena the job of diffusion is to mix things and even out discontinuities

right. So it is okay to admit discontinuities at the boundary.
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So what is going to happen is you have all fuel all oxidizers, so the β is discontinuous at the

boundary but as you now get into the domain the job of this governing equation particularly this

term is  to  even out  or  smooth  them out  this  discontinuity  all  right.  So  that  is  all  right,  so

considering that we have these boundary conditions the next step that we want to do is to non-

dimensionalize, non- dimensionalize equation.

Now many times as a student you feel that this is this kind of a burden like why would I want to

do  that  can  I  can  I  just  go  ahead  and  solve  this  right  away  the  answer  is  sometimes  non

dimensional no dimensionalization is done for elegance, so your governing equation will look

very nice as if it has been to a hairdresser the other times most important technical reason from

an engineering point of view is you can now actually come up with non dimensional parameters

and the non-dimensional  parameters  are  essentially  a  group of  quantities,  so which are now

grouped together in such a way that it is okay to vary one of them and not necessarily the other

or you can vary them in combinations so that the non dimensional number is remaining constant

and so on.



So you can begin to see how the different parameters that are in the actual problem can group

together in influencing the solution and the solution that you obtain could be just obtained for

one value of the parameter as a whole non-dimensional parameters or you do not have to re do

this  for  many  different  parameters  which  are  non  dimensional  which  are  not  non-

dimensionalized. So it is pretty good hereto basically say that let us now say φ / B, now because

you have a characteristic length scale in the or direction you can non-dimensionalize by that

fortunately  in  this  problem since  you have  neglected  axial  diffusion  right  a  neglected  axial

diffusion it is a infinitely long duct.

So pretty much do not have a good length scale corresponding to the radial the axial direction it

is almost infinite right, so what you are basically looking for is what is the diffusion length scale

because that is a process that we are basically looking at in fact what we should be looking at is

what is a competition between diffusion and convection or how fast are we able to diffuse as we

are converting okay, it is kind of like a race between the two the question is how much could

have diffused out how this way while I am converting at a particular rate that is now going to

give me a certain length scale associated with this right.

So that is going to be made by saying if I now have my ε = Z let us say Z / u / B 2 / D right, so z /

u is essentially  a convective length scale and b2 /  D keep in mind d has units  of like meter

squared per second right, so B2 as meters meter squared therefore this has a units of time alright

and so z/u also has units of time and therefore ε becomes non dimensional but in this the only

variable is zone okay.

So the farther you go and as you convert you know how you are the more time you are taking but

in this time you are also defusing this way that is because b is the length scale corresponding to

diffusion because the diffusion is predominantly radial right so if you want to put these two

together then this is a the z / u b2 as a matter of fact you could begin to think about this s if I were

to say I do not know any of this let us say I know I am not interested in thinking about the actual

problem the professor asked me to non-dimensionalize ICB as my parameter ready the length

scale here and that fitted and fairly well with a I canter you do we will do the same thing with ε I



would like to think of this is just z/ d then you have all the stuff sticking out which is essentially

d / ub.

Now UB/  D essentially  is  the  counterpart  of  your  Reynolds  number  that  you would  use  in

momentum mixing but here this is species mixing so you would actually have to use the pickle

mass transfer number which is the corresponding part of this so this is 1 a 1 /  pic where PE is

UB/D right.  So from here we can begin to  think if  pickle  is  kind of small  all  right,  then ε

becomes proportionately larger okay, so pickle is small is basically meaning that you have less

convection relative to diffusion so you would expect that you have more diffusion happening this

way but less convection happening that way so you should actually be able to get your flame to

be shorter so that is what you should expect for smaller pickle number.

Because you are not going too far along the convective path rather you are diffusing, so your

flame should all be confined to closer to the burner because you have diffused a lot therefore a

smaller pickle number will correspond to a shorter flame effectively and we are trying to cover

the  shorter  flame  by  artificially  blowing  up  the  ε  having  is  1/  pickle  there  is  actually.  So

effectively this takes into account that it effect. But your governing equations do not take into

account axial diffusion, so that it is something that you have to keep in mind that is what should

really make the flame shorter strictly speaking how the governing equation turns out to be.

Further you can form some more non-dimensional parameters let C b = a / B and I will make a

big deal about this and the next one which is η = αo0 / α f0   okay αo0 / α f0  if you want to now

go back and see what those are this is nothing but α f0 would be Y F0 / WI η I with the negative

sing α o0 will be YF0 Yo0 / Wo with the negative sign so the negative sign cancel each other all

you are going be dealing with this Yo0 / wη o / yf 0 / wf ηf alright.

And we will come back to this and this quite soon we have non dimensionalized or we have non-

dimensionalize Z and then we have a couple of now new non-dimensional parameters in the

problem but we are not non dimensionalize β okay, so let γ b = β / α f0 that is to say if you know

where to basically go back and say as we just have to pick one of those two right we just pick α

F0, so β / α F 0 would be α F / α F 0 – α o / αo0 is what we are going to so α f0 okay.



So you just have a α f0 in the denominator just to go with this you can also see that this goes

with this here we have divided αf0 in the denominator therefore we are using this, so that the

way the new is defined is how that way gamma is also defined okay. Now the interesting thing if

you now do all these things the governing equation then becomes then becomes ∂ γ/ ∂  ε = 1/ φ

∂ / ∂  φ of φ of ∂  γ / ∂ φ.
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So essentially we got a µ / d completely alright, so that is because that information is actually

buried in eater we have scaled  ε corresponding to the competition between axial convection and

radial diffusion that is what this signifies right, so we now have a very nice-looking equation

without any parameters. So this solution is now going to give you, so this equation is now going

to give you a solution without any parameters except the boundary conditions are now going to

carry some parameters. So what are they?

The boundary conditions are the non dimensional boundary conditions are so now we have to

write in terms of γ so γ = well let us first write the Nyman besiege for φ that is very easy at φ = 0

we have ∂ γ / ∂ φ = 0 and at φ = 1 we have ∂ γ / ∂ φ = 0 for all ε  0 right in fact we should go˃



back and said write here for all z  0 that is true for the entire domain for the drought then, so˃

this is the boundary condition for φ in so for γ in φ but what happens to γ in ε right, so n γ we

now have to translate this boundary condition in non-dimensional form that simply turns out to

be 1 recall we can't this is basically this is basically α F 0 okay and then we just form a γ / α f 0,

so we need to get a or do we do we have a negative sign with the negative sign is α f0t okay.

So with the negative sign is α f0 and we just divided by α f0, therefore you simply get a 1 and

similarly if you now go back and plug in here this is actually –αo0 okay with me the positive

sign this is –αo0 and then for trying to find the γ u / α F 0 so –αo0 / αf0 is nothing but –η alpha F

naught is nothing but minus η okay, but where are they we can now write this is actually a 0  φ˂

< c, c < φ < 1 so even though your governing equation did not have any parameters there are a

couple  of  parameters  that  have crept  into the problem in terms of new and see through the

boundary conditions all right and this is going to be very, very important in fact this is actually

only one boundary that is set at, at η takes as 0 right.
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Basically that is the boundary that is way that is describing the problem for you if you did not

have fuel and oxidizer initially unmixed entering the domain at η equal to zero you do not have a



problem okay so this  essentially  tells  you that the fuel and oxidizer  are in as they enter the

domain or unmixed and that is what the problem is so all the parameters and the problem are

now reduced to just these two okay.

So with this I am not going to derive the solution for you and I am going to assume that you

know how to how to derive this okay and then the way to do this is you seek a product solution

that means you now say γ is a function of γ is now a product of two functions one function which

is a function only of try another function that is a function only of η so you now have let us say

seek, seek a product solution of the form.

Let us suppose γ equal to some sum function χ  that is only a function of ξ and another function

let us say I do not know what is a good symbol well could you just go back with Anglo-Saxon

variable so it can simply say capital X ξ and capital Y of η alright so if you did this plug it back

on  back  in  here  go  through  the  product  solution  approach  and  substitute  these  boundary

conditions noting that you are expecting to have a, a periodic solution in sight because you have

boundary conditions there.

This is a inhomogeneous boundary condition here so you are not expecting periodic solution in η

and so on you do all those things and you can now find the solution to be the solution is γ equal

to 1 + μ C2 -μ +twice of 1+μtimes C ∑ n=1∞ that means it takes integer values 1 over Ø n j1 of C

n /Go of Ø n2 times Jo π n ξ e-πn2 ξ.
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I do not even understand this right well let us, let us just go step by step I mean of course we are

not as intelligent as we would like us ourselves to be so all these things are something that we

have seen okay these are part of the parameters of the problem the first time we encounter a

problem now is what is  Ø n so Ø n is what is called as the n to 0 of j1 of π where J1 is, is a

Bessel function right.
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So that is a business function of first order so obviously then Jo is the Bessel’s function of 0th

order right now what is basis functions Bessel functions are those that look like sines and cos

sines in fact Jo and J1 would look like sines and cosines except that they do not have a constant

amplitude so you will now find that they kind of keep decaying but keep alternating about the

horizontal axis right so that is the kind of solution.

That you are going to get and you now have a ∑ over a series of those so Øo sorry, Øn being the

n to 0,  0Ø essentially  means that  this  function keeps  on alternating  up and down about the

horizontal axis at specific values of  Ø the argument right so when you say zeros those are the

values so where are where all do you have the J is going to 0 is essentially where you get these

values of Ø okay.

So it is kind of like in sin and cos sign so if you take a sine wave you know that the sin wave

passes 0 at 0 / 0  Ø2,  Ø 3  Ø  4,  Ø and so on so, those are the zeros of this design function so

similarly we will have these what will happen is you will find these are not actually equally

spaced they have  a  certain  pattern  all  right  so that  is  how the  Bessel  function  behaves  and



typically we get into a business function mainly because you are having this kind of a derivative

for cylindrical polar coordinates.

And that is mainly because we using axis symmetric pipes if instead if you now had like vertical

plates like channels right you will see you will not have a complicated looking derivative for the

Laplacian you will simply have a partial square β divided by partial square or partial square γ

divided by partial square Ø partial try squared and you will get sines and cosines and typically

for these kinds of boundary conditions.

You should get cosine a cosine function here and that would actually imply that we are fitting

strictly speaking what it really means is we are fitting this particular discontinuity by a Fourier

expansion and then letting the Fourier expansion DK okay so you essentially you now have a

step that is represented by a Fourier series and then it's  subjected to boundary conditions of

Norman BCS on either side.
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And then as you keep on mixing or nor this, this particular function now changes and essentially

the, the Fourier representation keeps changing as you as you go along until you get a more and



more uniform variation in the mixed refraction in the key instead of a Fourier series you now

have a series that is based on Bessel functions and that is possible anytime you have you are

looking at functions that are orthogonal to each other like in terms of sine’s and cosines you will

have orthonality investors function also you have orthonality so based on these you can actually

form a series that look like Fourier series.

But not necessarily in sines and cosines but some other orthogonal basis functions that is what

we have done here okay or that is how it comes out to be you need when you now pursue the

product  solution  how do  you  know it  is  a  product  solution  because  you  now see  the  side

dependence actually here and the ξ dependence here it is a product okay.

So you know you do not have sigh and a term mixing up with each other there they are separate

but they are multiplying the functions containing them are multiplied with each other and we

also see that you e -  Øn2,  e -  Ø and square data that is exponentially decaying term ξ so what that

basically tells us is as you now go to e to ∞ further and further  from the burner this entire term is

going to go away.
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And you are now going to get a, a γ that is only this, this term all right and γ is nothing but β

normalized and β is nothing but a difference in normalized mass fractions and normalized mass

fractions  are  this  so essentially  it  tells  you that  as  you go further  and further  out  the  mass

fractions are going to differ by a constant all right and the constant depends on two things μ and

C so now we have to think about what does what does μ and C.

Basically mean they mean something very interesting μ is telling us YO0 / WO μ or divided by Y

FO/ W OμF this has got nothing to do with the geometry of the problem it is got to do with our

Inlet  mass  fractions  of  oxidizer  and  fuel  and  their  respective  molecular  weights  and  their

stoichiometric coefficients in the reaction in the single step stoichiometric reaction ok this is a

stoichiometric reaction that means you do not have either feel or oxidizer left over as part of the

products.
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So what are the stoichiometric coefficients required for them to react with each other completely

right that is what is contained in this so this is a mixture quantity and it is a Inlet quantity because

it has YFo and Y0 see on the other hand is purely a geometric parameter it tells you how small or

large is  the inner  duct  relative  to  the auto duct  okay so now you care to  think about  many



different combinations is it possible for me to have a very small inner duct relative to a very

large outer duct but send a high concentration of fuel inside when compared to a very diluted

concentration of oxidizer outside that is suppose that that is one possibility.

The other possibility I now have a fairly fat inner duct and just a little bit bigger outer duct that

means most of the outer duct is contained by the inner duct and you are essentially trying to send

a  lot  of  fuel  but  let  us  suppose  that  the  fuel  is  highly  diluted  but  the  oxidizer  is  highly

concentrated what kind of flames will we get right on the one hand you are trying to send a very

concentrated amount of fuel but in a very small region.

On the other hand you are sending in a lot of fuel all right but it is actually highly diluted it

would you would you happen to have the same kind of flame right so that is what this, this is

going to dictate okay so what are we going to look for in this what we want to see is interestingly

this is now a γ that is a function of ξ and ξ that means we should be able to plot γ in this domain

in  were  the  mixing  is  happening  and  all  we  are  looking  for  is  look  for  γ  =0  right  as  the

stoichiometric surface which is essentially the flame shape.
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So that means if you are able to plot this particular function in the domain and have a contour

map of γ you now look for the γ=0 control the contour of γ=0  corresponding to γ=0 so what is

γ=0 mean right, γ=0 means or β=0 if β=0 then αF =αO back here right so γ=0 means β=0, β=0

means αf=αO and αF is nothing but -YF /WFμ F which is equal to - r y 0 / WOμ all right so what

this basically means is we want our YF/YO along γ=0 to be in the ratio of WF/WOμO right.
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What does that mean if I were to simply say μf/μO that would mean the stoichiometric ratio in

terms  of  moles  right  all  I  have  done here is  to  multiply  μf/wf  and multiply  μr/wo so I  am

essentially looking at the mass ratio okay so this is the mass ratio of stoichiometric proportions

of fuel and oxidizer in a reaction force truck for the fall for complete reaction to happen and what

you  are  basically  saying  is  μf/μo  anywhere  in  the  domain  is  in  this  ratio  you  have  a

stoichiometric surface.

And that is what the flame is that is what the frame sheet assumption is that is what infinite

chemistry means that is what makes this burnt approaches all about right so effectively it all

translates you are saying just look at the γ=0 control alright further let us look at go back and see

what μ is in the in the right of what we have done right.



So this implies we can write or you can simply write this equal to μ0/μfo right / wo μ / wf μf so

what new signifies is the incoming oxidizer fuel ratio by mass to the stoichiometric oxidizer fuel

ratio by mass right so effectively new tells us something about what is coming into the domain

relative to the stoichiometric mixture ratio and see tells us how much of what you are getting

alright.
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So what you are then thing is we can we can now begin to do a few things here one how does the

height of the flame get determine right so how does the frame look like what, what will happen if

you now try to plot this contour for γ=0 right so depending upon the values of your μ and C right

so if you now say this is your ξ =1, ξ =0 and you now fix your equal to C, ξ=C that is where the

inner tube ends and then the outer tube is, is there you could now get a flame that either looks

like this or in fact we have a wall there you could have a flame that looks like that as you now

change your μ.

So for different values so if you now fix your C at a particular value and change your new you

can get the flame to close over the fuel or you can get the flame to open up and close over close



over the oxidizer open up from the middle and close over the oxidizer all right so this is now

called the over ventilated flame and this is what is called the under ventilator right what does that

mean you are essentially having a concept of ventilation.

As in opening up more air or so when you now say over ventilated that means you have lot of air

when compared to fuel so the, the flame is actually closing over the fuel and consuming all the

fuel and we now say under ventilated that means you do not have enough air  so the fuel is

spreading out and then mixing with whatever little added can and then having and meeting it at

stoichiometric proportions along this line that closes over the oxidizer and opens up over the

fuel.

So by this what it means is if you now have a flame that looks like this you now have a fuel rich

region over here or pretty much whole field in the, in the actual case and outside is going to be

oxidizer  because  the  flame  is  separating  the  fuel  and  oxidizer  and getting  them to  meet  at

stoichiometric proportions in between all right so if you now have a under ventilated flame you

are simply going to have a lot of fuel that is going to go out unreacted over here.

So when would you expect a fuel which sorry when we expect a under ventilated flame or a over

ventilated flame so now think about those two limits that we were talking about if you now have

a  very  short  duct  for  the  inner  duct  we  are  very,  very  small  duct  for  the  inner  duct  then

compacted  out  a  duct  and  you  are  having  infinite  domain  pretty  much  no  matter  how

concentrated the fuel is relative to how dilute the oxidizer rich you are very likely to have a if

you a flame that is closing over the field.

That means it is going to be an over ventilated case if you now have a very, very broad inner duct

when compared to the outer duct being just a little bit bigger you are very likely to have a opened

up flame that is under ventilated right no matter how much you are diluting things but there is an

effect  of  that  and that  effect  is  going to  come up when you have your  a  fifty-fifty  kind of

situation that is your neither too small or too large.



The message here is the, the slot width is going to dictate whether he flame is good going to be

over ventilated relevant and related more than new in other words the far-field behavior of the

flame is more sensitive to see rather than new so what is it above new in this then you have to

ask yourselves look at this picture this flame if you are no similar here you are just beginning to

look at how this mixing is happening and then the flame is shaping up notice them a big in

eclipse pretty much the same.

They are going like that over the oxidizer starting from the field right but then if you keep going

that went that way this one this way and only now call those were not related that fundamentally

did but why did they start going like that in the first place right what cannot you have a flame

that  what that  was like this  that  could have been a possible  solution as well  so what is  the

difference between this and this, this flame started going over the fuel and closed over the field

where as this flames started going over the oxidizer and then closed over the fuel.

This flame goes over the fuels and closes over the few so you now have multiple possibilities

you could have a flame that starts going over one of the duct and then closes over the other or it

goes over the same that encloses over the same duct right so what governs this is new when they

are just beginning to mix and react they are just beginning to consume the reactants and it is a

final large-scale availability of reactants.

That is going to shape up how the flame is going to end up and as we go along and the last scale

availability  is  dictated  by the see how much fuel  you have on the whole versus  how much

oxidizer you have but locally as they just begin to mix and react they are not worried about that

they are not worried about how they are going to end up and all the less deficient species is

consumed reactant is consumed.

They are going to first be dictated by what is the new show, how concentrated the oxidizer is

relative to the fuel as it comes in relative to what their stoichiometric ratio demands so if you had

a fairly concentrated fuel but coming in a very, very small region it is going to actually go out in

search of the oxidizer because oxidizer is dilute all right and ultimately you are as you go along



you are having a short fuel duct is a small steel duct so you are running out of fuel and then it

closes over.

So again you can see that the new dictates  the near-field behavior  of the flame and the sea

dictates none both of them out together it says like it, it is difficult to separate them where you

look at the sensitivity right you look at the sensitivity of this the, the far-field behavior of the

flame is more sensitive to see the near-field behavior of the flame is more sensitive to new all

right and then from this you can also find out what should be the shape of the flame.

So what should be the combination of new and see together that will give rise to a optimally

ventilated flame right a flame that is kind of like that but I just went too fast I did not tell you

whether it is going like that or like this right that depends on the new what I am talking about is

for a given new what should be the C such that the flame goes vertical and as it good ∞ we will

talk about it later.
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