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So we stopped here last  class  where we derive the energy equation  across  the discontinuity

representing  the  reaction  zone  and  we  wanted  to  see  how  this  looks  like  in  what  is  now

beginning to shape up as what is called has the Hugoniot plot so this is what you would actually

call okay to some extent a simplified Rankine Hugoniot equation.
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 So how does he how do you look at  this  Hugoniot  this  curve in the he Hugoniot  plot  the

Hugoniot plot is a domain of P ∞ but 1/ ρ ∞ and then you know begin to look at how this looks

like you know have a coefficient γ / γ  - 1 times p ∞/ ρ and ρ ∞, so this is itself like a product of P

∞ and 1/ ρ ∞ right and of course we now say P0 / ρ not as like a parameter that is represents like

the initial state and again you can look at a p ∞ times 1 / Ρ∞ coming up over here with a different

coefficient of course therefore it is all going to cancel.

Typically you will always look for things like things getting cancelled but that is not going to

happen here and of course you now have a mixture of things like p ∞ / ρ0 and p0  over times 1

over  ρ  ∞ times again you have a p0 /  ρ0 term so this is beginning to look like if you are now

looking at like an XY plane you are now beginning to look at a curve that is kind of like some a

XY +  bX + cY + d = 0 right so if you now have like a leading order term like XY right what

would that actually signify if xy if xy = 1  one if that is what you had.

Okay that is like A = 1 and d = 1 then you would simply A and B and C or 0 in whatever format

that I just template that I just explained you would be looking at a rectangular hyperbola but

since you also have A p ∞ / ρ0  term and I p0 / ρ∞ term we also have some B's and C's that are



non zero therefore it is not exactly a rectangular hyperbola but it is going to be modified so it is it

is going to be like a hyperbola here.

(Refer Slide Time: 05:53)

So hyperbola is going to now look like if you know had something like that okay now we do not

know exactly if it is going to be a rectangular hyperbola in this P∞1 / ρ ∞ access you domain it is

very likely that you could have this cross over to a lower value okay so I am not saying that this

exactly is the curve at the moment but what we are trying to do is to sort of construct this curve

as we go along okay.

Well why did we want this curve because we wanted to solve these conservation equations across

this discontinuity to locate react product properties given the reactant properties including U0

which is something that we are not very sure that we know to begin with and U0 is actually

embedded in the slope of the relay line but the hugoniot so this is what is now called these so this

is this rectangular hyperbola is what is called as a hugoniot curve right.

And  the  hugoniot  does  not  involve  any  m.  in  other  words  it  is  not  it  is  like  a  purely

thermodynamic curve okay so the flow information is actually buried in the Rayleigh line which



is a mixture which is a combination of continuity and momentum together so that that carries the

flow information whereas this the energy the thermal energy equation effectively is not carrying

any flow information there.

And then we are what we are looking for is a intersection of these two these two curves that is a

Rayleigh  line  and  the  hugoniot  curve  and  sure  enough  we  find  that  there  are  a  couple  of

intersection points which will now tell us that if you now started out with the p0 and 1/ ρ0  as the

reactant conditions and this particular point is typically referred to as what is called as origin of

the hugoniot plot.

(Refer Slide Time: 08:24)

Right and then what we want to see is where is actually the conservation equations where are

they satisfied again right so what you will find is that you now get like about two points where

they could be satisfied so you have like at least two possible solutions this is a great progress that

we have done starting from when we did not do it when we did not have any equations to solve

we had like an entire plane to search the solution.



And then when we now had the Rayleigh line we now reduce the possible set of points to a line

rather than a plane and since you now also have the energy equation in the form of the you go to

your curve we look for point of intersection of course you know beginning to see like about two

points of intersection instead of just one right.

So we now have to look at what are the different possibilities for these two points of intersection

whether it be only two or whether it be when will it be one and if it is two what are the possible

two values and so on right obviously this is a this is a curve which has the same sign for the

curvature that means it is always like alike concave facing upwards and side upwards into the

right.

Therefore since the curvature does not change sign you do not have any points of inflection in

the hugoniot curve when I straight line intersects with this you can have up to two intersection

points you are not going to expect more than that right but you could look for one intersection

point or none when would you get one section point if  the Rayleigh line but tangent  to the

Hugoniot right or Rayleigh line never really intersects with a Hugoniot.

Then you do not have any solutions right so there is some hope we are now looking at zero

solutions one solution or two solutions not more than that good so with this picture we now see

how to go about constructing this plot a little bit more carefully right the first thing that we notice

is the first thing that we notice is if your q > 0 okay so for q > 0 there you go into your curve

passes to the right and above the origin that is there okay for q = 0 you can also check this if you

want by plugging in values for p∞ and ρ∞ for q = 0 the Hugoniot would pass through the origin

you see right.
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Now what is q is essentially negative of what is called as H∞0 - H00  now H∞0 and H00 or in

tern σ i = 1 to n Δ HFI Yi 0 Δ HF I0 and  σ = 1 to n Yi ∞ H Δ Hfi0 right so it is only because of

the compositions at Yi at the 0 condition and the ∞ condition the Δ HFI0  is the same for both

because it is a standard heat of formation right so we are now getting these different HI0 and

HI∞ and then the difference between the two is essentially the chemical heat release within it

with the negative sign okay.

So that is a chemical heat release if you q = 0 that means you are not having any chemical

entities SO the chemical heat release is not there essentially we are talking about a non reacting

mixture  right if  you have a non reacting  mixture with the Hugoniot curve that  is  somewhat

similar to what you what you might have gone through gone through in a basic gas dynamics

course where you are still looking at the matter of fact if you know think about how we have this

equation.

We had like a H0 + ½ U0
2 = H∞ ½ U∞2 that is exactly without the U right and that is exactly the

same as what you would call as an adiabatic energy equation that you would that he would write

for  a  energy  conservation  across  a  shock  okay  so  across  a  shock  you  would  find  that  the



stagnation temperature remains the same the stagnation enthalpy particularly remains the same

right that is true when you do not have any heat release okay or any chemical heat release.

So a curve that actually passes through the origin with q = 0  is what is called as the shock

hugoniot right now that tells us that if you now have a q ≠ 0 and  we expect typically the q to be

> 0 rather than < 0 we not looking at cooling kind of thing right so what is it when you now have

a wave that is reacting in addition to being a shock right so you are now beginning to think of it

and then of  course a  shock is  actually  either  phasing a supersonic  flow or  it  is  traveling  at

supersonic flows.

This is supersonic speeds relative to like still reactants what is it I mean this is not something that

we thought about we started talking about something like low mach number conditions and all

those things but now we are getting into something but of course in what we are doing now we

are not really making the Loeb Mach number assumption right we should be now game for any

kind of mark numbers that are approaching your wave but the but the language that we are

beginning to use.

Is now beginning to doubt admit the possibility of supersonic flows right okay when would that

happen so let us just do this a little bit more carefully let me let me diluter this picture of all the

terminology that we have that we are now used to and we just want to now redraw this only with

things that we want to now take.
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So let us say you now have the origin again I am not going to name it now and let me first draw

the he Hugoniot line a little bit farther away and let us now say that you go here and here and let

us see what happens here your Rayleigh line can have only a negative slope right so if you know

if this is your origin of the hugoniot the Rayleigh line can fill only the third quadrant sorry the

second quadrant or the fourth quadrant right.

It cannot go like this so I cannot get into the first quadrant it cannot get into the third quadrant so

this part of the Hugoniot is never going to be used right so we now have to erase the spot away

from consideration we just do not want to worry about that part of the Hugoniot curve we will

worry about a part of the Hugoniot that starts from where whatever  ρ  ∞ is = 1 over  ρ0 okay

another part of the Hugoniot where p ∞ = P0.



(Refer Slide Time: 18:09)

What does that mean if you were to now have a solution that somewhere here that means your

Rayleigh line is sort of passing like this it means two things one your final pressure is about the

same as the initial  pressure the pressure hardly changed when the flow went pass this wave

second this Rayleigh has a almost like a 0 slope that means the wave is not moving much so it is

possible that if you are talking about nothing.

Yes it is like you do not have a wave so obviously the pressure and increase yeah it cannot be

true because the density increase well the density decreased so there was a density decrease that

was primarily because if the pressure remains the same and the density decreased that is because

the temperature should increase so you had a heat addition all right that is there is a reason why

the  Hugoniot  is  shifted  away from the  origin  in  the  first  place  so  you had a  heat  addition

correspondingly you had a temperature rise but you do not really have a wave that was moving

fast enough.

And you did not have a corresponding pressure rise this is now beginning to look like what we

were talking about for what is called as Loeb Mach number conditions  right the pressure is

approximately a constant right so Loeb Mach number simply means that the wave is in moving



too fast or relative to the wave the reactants are not moving in too fast right there for the Mach

number is very low.

So you now have one branch of the Hugoniot there is now beginning to correspond to waves that

are moving kind of very slowly okay and the fastest wave could possibly have a slope that is

tangent to this at this point that is the fastest wave that is possible that is the highest m. that this

branch  of  your  hugoniot  will  intersect  okay  if  you  for  any  faster  waves  the  Hugoniot  the

Rayleigh line is now going to actually go downward and fail to intersect the this branch of the

Hugoniot.

Will that intersect the other branch not immediately you now see that you have to actually go to a

still steeper Rayleigh that will begin to intersect the other side or if you are thinking about an

experiment where you want to conduct a stabilization of a wave by sending in reactants at faster

and faster flow rates right between this particular flow rate and that particular flow rate you just

cannot stabilize a flame at all and then you again begin to stabilize flames for all draining lines

that are now having steeper slopes than this.

You can have points of intersection until you get to this point which has an infinite slope right it

is kind of again just like how a zero slope is almost impossible and we are thinking about like

very low velocities right infinite slope again is not something that we want to think about but

very high very essentially very high slopes that means very high velocities for which the pressure

jumps but the volume did not change a lot so this is more like a isochoric process that say what

you started out with was the isobaric process right.

So in the one extreme you started out with an isobaric process corresponding to very slow waves

right and then you could think about a little bit faster wave is but with a sudden decrease in

pressure not a whole lot of decrease okay but from here to here you see that the pressure is

decreasing only a little bit okay but the expansion that is the density decrease as you go this way

one over density increases.



So density actually decreases there is a significant amount of expansion that is going on right

from the beginning for because of the heat addition and then nothing until you get to very fast

waves and you can now get these very fast waves to go all the way to the other limit where you

are getting close to isochoric process that is like a constant volume situation right and there again

because of the heat addition you hardly have any change in volume but essentially the pressure

increased right.

So what you then have is this is what is called the lower branch of the hugoniot and this is what

is called as the upper branch right and we want to call these points the tangents the tangent relays

intersecting at these points as the LC- J point and this is the UC- J point C - J sands for chapman

joogay right so the LC- J indicates the highest velocity of what is called as deflagration waves.
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So this is the lower branch corresponds to what is now called deflagration right so LC-J the

fastest deflagration wave and the upper branch of the hugoniot corresponds to what is called as

detonation and UC - J corresponds to the slowest detonation wave right and the m. UC- J is still

significantly greater than m. LC- J that means the slowest detonation wave is still much faster



than the fastest  deflagration wave that  simply means that  you now have two classes of two

classes of waves that are significantly apart.

There is really no overlap at all in their wave speeds and in fact what I would actually show what

I should actually say is this would be much greater than so in terms of wave speeds like instead

of writing m. if I were to write U0 so assuming like they started out with the same ρ0 right what

does now see I told you that I do not even I do not U0 is right I am still not going to know the U0

is right.

I am still not going to know the μo until the end of this exercise but I am beginning to get some

ideas about what the bounds of my unit should be for two different kinds of processes that we are

now beginning to think about namely deflagration and detonation right so what we are talking

about here is for detonation for, for deflagration waves your μo of the order, of the order of a few

tens of centimeters per second under laminar conditions.

But your degeneration waves so to a few tens of centimeters per second is still less than a meter

per second but your detonation waves are typically of the order of a few kilometers per second so

now see that there is like about three orders my three to four orders magnitude difference a factor

of three 3, 2, 4 orders magnitude difference between the detonation velocities and deflagration

velocities right what we should further notice then is that we want to think about the deflagration

is going as subsonic waves whereas the detonations are going at supersonic waves.

But before we do that we want to now quickly go through some mathematical properties because

we started out with mathematical equations for these like this one and then we notice that that,

that  goes  like  a  hyperbola  and  then  we  of  course  had  a  simpler  mathematical  expression

representing a straight line very, very easy to see this for the railway line and we are now looking

at these intersection and so on.

What I would like to first of all before we proceed further is to give you expressions in these are

not very difficult for you to derive and these are all like typical exam exercises okay so you can

figure out for example depending upon the Q what is this point okay the, the, the, the lowest



value of 1over ρ ∞ possible for the detonation branch and where, where is this point for example

what  are  the  coordinates  of  your  LCJ  point  that  will  also  depend  on  Q  and  what  are  the

maximum.

So what is the maximum value of 1over ρ ∞ that is possible right and what are the maximum

values of Po that is possible that is of course equal to p ∞ and what C minimum value of P ∞ that

is possible what you will find is you will you will notice if you now try to actually look at the

mathematics of this, this would ultimately go and intersect the x-axis right.
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And where it  intersects  is where you would get the maximum value of 1 over ρ ∞ and the

corresponding value of Po , P ∞ would be 0 okay as a matter of fact what you will find is this, this

rectangular hyperbola asymptotes to a value of P ∞ that is negative so what you can actually do

is to go ahead and find out the horizontal  asymptote for this  rectangular  hyperbola and you

should find that,  that is negative and since you cannot admit negative pressures in reality you do

not worry about where exactly it has some thoughts.



And you have to stop thinking about it at where it hits the abscissa that is corresponding to your

P ∞ equal to 0 and then there is like a corresponding 1 over ρ in that is a maximum value to

which the proper the products can expand right similarly you can look at the upper branch and

find out that the lowest value of P ∞ can take will depend on Q but the corresponding 1 over ρ ∞

will be equal to 1 over Ρ not right.

Then it can also locate this point the UCJ,  UCJ and then where does it go so what you will have

to find out there is a vertical asymptote which is having a positive value of 1 over Ρ∞ that is the

lowest 1 over Ρ∞ that it can take but it  is now going to assume talk to that that means the

maximum value of P ∞ that can take is ∞ when it hits asymptotically at ∞ right so these now give

you limits for these pressures and densities that it can take in these different branches of the

hugoniot curve.
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So we can we can go through that but I think I think even before that we can point out that are so

in the in the deflagration branch in the deflagration branch p ∞ is less than or less than or equal

to po right and 1 over ρ ∞ is greater than its suddenly greater its not greater than equal to because



it would be greater than or equal it would be equal to 1 over ρ not only for Q equal to 0 for

positive values of Q you can never get your 1 over Ρ ∞ to be equal to 1 over Ρo.

So it is always greater than 1 over Ρo for Q greater than 0 that is that is Ρ∞ is less than ρo not the

density decreases and the pressure decreases okay for Q greater than 0 you always have T ∞

greater than To this is heat addition so the temperature increases right so with the temperature

increasing density decreasing is not news but pressure decreasing is indicating these two together

then given this means you now have the products go through an expansion right.

So it is when you have an expansion is when your pressure decreases and your density decreases

even with the temperature increase right so a deflagration branch corresponds to an expansion

wave right on the other hand if you now look at the detonation wave in the detonation branch

your p ∞p ∞ can never be equal to po for Q greater than zero right only through only, only for

cube equal to zero will then he go to your pass through the origin.

And you have only one tangent relay right but for Q greater than zero p as p ∞ is always greater

than po for q greater than 0 which implies again t ∞ is greater than po  you always have a heat

addition that you are having in mind in both cases right t ∞ is greater than po all right so p ∞ is

always greater than po and what about ∞ can be less than or equal to 1 over Ρo right so the highest

value of 1 over Ρ ∞that they can hope for is this right.

 

That is equal to 1 over or not all other 1 over Ρ infinities are going to be less than that and this

implies that is Ρ ∞ can be greater than or equal to do not that means you now have a density

increase corresponding to a pressure increase accompanying a temperature increase when the

temperature increases you would like to think that the density should actually decrease but if the

density  decreased sorry,  if  the density  increased accompanying the temperature  increase that

simply means that the pressure increased a lot more right sure, sure enough.

 You look at the way the curve goes it is, it is going crazily in the parallel along the pressure axis

right so the pressure is obviously increasing a lot so taken, taken together all these things mean

that  we  now  have  a  compression  wave  right  so  a  detonation  basically  corresponds  to  a



compression wave so we talked about a shock review we are now beginning to look at one of the

branches actually corresponding  to compression so it is all kind of going together you can see

that there are elements of what we have done, done before in gas dynamics beginning to look

like a special case of what we had what we are talking about right.

(Refer Slide Time: 36:35)

It is a special case in two ways one first of all or it is a nonreactive case okay what we what we

went through in gas dynamics is basically a nonreactive case a supposed to a reactive case here

and the  moment  you have  reactions  then  it  belongs  to  only  one  part  which  is  like  the,  the

supersonic propagation as we will as we will see and show corresponding to detonation whereas

the results another part  which is corresponding to deflagration that subsonic propagation and

where expansion happens rather than compression all right let me also say one more thing so

now that we have also come ties to ourselves with some more here we could further actually

divide this into five parts.

I should say four parts rather so you now have you can you can now divide your upper branch as

something that is above the you CJ and something that is below the CJ again you can divide the

lower branch or something that is to the left of LCJ and something to the right of LCJ so let us



now call this call this region 1, this is region 2, gives us region 3, and this is region 4 so we

essentially  are  looking  at  the  upper  branches  a  detonation  branch  the  low  branch  is  the

deflagration branch.

So what we would like to call this as region one at the moment they are just names we just do not

still  understand  them  more  completely  but  let  us  just  give  the  names  first  and  then  start

understanding because that will kind of aid as a dozen understanding so region one is essentially

what is called as a strong, strong detonation and then of course you now have CJ detonation and

then we have region to that corresponds to your week detonation.

And then we have region three this corresponds to a week deflagration and then you have the CJ

deflagration and then we have region for that should by now be easier for you to figure that

should be called strong deliberation.
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For you to remember this or this stage let us just say that when you are now looking at a region

that is about the CJ point here the UCJ point here what that simply means is we are now looking

at a solution so that means your, your railway line has to actually pass them out there and then



you are looking for a intersection somewhere there right that means the really line is obviously

steeper than the tangent really there that means the wave is propagating faster there right.

And it is now leading to a very high pressure and a very, very high density there is a low 1 over

Ρ∞ and a high p ∞ say a  very low 1 over  Ρ ∞ means a  very high ρ ∞ so this  is  actually

corresponding to a lot of pressurization and lot of compression so that is why we is basically

saying strong but it is going to be a little bit more than that we will, we will, we will all see what

is the propagating mach number for the wave.

And what is the downstream mach number for the products it is based on that that actually we

now give this normal Fletcher that this is strong detonation but at the moment you can clearly see

that you this is pretty strong in the sense it is, it is having a lot of compression whereas a week

detonation is just as fast if you were to now look at a solution that is here it is really line is pretty

steep as well just a speech test asleep as well.

So it is pretty fast all right but it is not leading to a very high pressure and the departure from the

origin is not, not a lot in the 1 over Ρ ∞ access so you 1, 1 over Ρ ∞ is not lower therefore the Ρ ∞

is not a lot higher therefore you are having a smaller amount of compression when compared to

the strong detonation so relatively speaking we would like to think of this as a week detonation

okay.

What we will actually find is when we now have a flow that is going through a detonation wave

just  like  in  a  normal  shock you should  expect  that  if  the  flow is  approaching  the  wave  at

supersonic speeds if the strong if the shock is very strong you should expect the flow to actually

become subsonic all the way that is, that is a mark of its, its, its extent of compression so if it has

been compressed a lot it also gets decent the flow also gets decelerating right.

So a lot of compression would be in a lot of deceleration all the way down to subsonic levels

whereas in a week attenuation you expect that the downstream product flow is still remaining

supersonic although not as supersonic as the upstream reactants there is the deceleration all right



but not down to subsonic levels correspondingly the CJ detonation should mean that of course

you are going through a supersonic reactant flow reaching up to the wave.

But the reality but the products correspond exactly to sonic conditions that is what is the decade

that is what is denoting a CJ the detonation similarly if you are now begin to look at this side

what, what it means is in a deflagration we are looking for an expansion so any now looking we

are now looking for an expansion that means the pressure should decrease and the density should

also decrease if you now look at this region the pressure decreases are not a lot.

And the density decrease the density decrease or the or should say 1 over Ρ∞ increased is also

modest therefore a Ρ ∞ decrease is also more s right so you are now not having a fairly large

decrease in p∞ and ρ ∞ and therefore you are expecting like a week deflagration okay so you are

now looking at a railway line that is corresponding to a, a velocity that is still lower than the SI je

deflagration  right  it  is  slower  and  so  correspondingly  you  are  not  really  expecting  a  large

decrease in pressure.

And density but for this load deflagration you still can intersect over there so this, this wave is

just as low but it is actually causing a large decrease in pressure and a correspondingly large

decrease in density right that is a lot of expansion that is going on and that is why we want to

term it  as  a  strong  deflagration  right  so  you  now have  a  large  expansion  that  is  going on

proportionately you are now expecting the flow to accelerate.

So when a when a reactant flow is actually going through a deliberation wave it tends to the rate

and this is actually common practice so in all these things we always try to relate to what we

already have experienced with so what I would like to suggest is when you are dealing with

detonation waves you now recall what happens in gas dynamics but what you have learnt in your

one-dimensional gas dynamics from your undergraduate.

Let us say if you have gone through a gas dynamics course in your undergraduate level you can

recollect what happens across a shock and try to modify your thoughts to accommodate reactions

and  so  on  when  you  are  dealing  thinking  about  deflagration  waves  this  is  actually  more



commonplace  in  terms  of  daily  experience  like  what  happens  in  like  a  Bunsen  burner  for

example right.

So  if  you  now have  a  Bunsen  burner  and  then  you  have  like  a  cold  reactant  flow that  is

approaching the moon is and burner and then it goes through the flame and the flame is like a

conical flame and the end and the flow goes through this it now expands and then kind of goes

like that okay and then you can also see that occasionally and this is not very difficult for you to

think about as a thought experiment or even go back and see if you can do this and see for

yourself when you now have like a inclined flame like this in a Bunsen burner.

And if you had like, like a like a little particle that is kind of glowing okay so if you now see how

this glow happens as it as it goes along when it passes through the flame it goes much faster than

compared to when it try to approach so it is like a little spark of some particle that is just glowing

you can clearly see that it this goes faster right so when you now have a deflagration wave the

flow accelerates when it goes past it because it is expanding right.

Now well  you are here you are not expanding a whole lot  and that  is  because it  is  a week

deflagration and therefore you started out with the flow approaching you at subsonic speeds and

you are accelerating to further faster but still subsonic product speeds that is the mark of week

deflagration but when you now go to go past the LCJ over here to the strong deflagration what

that  means  is  you  are  now  having  a  very  large  amount  of  expansion  that  is  going  on

correspondingly  there must  be a very significant  amount  of  acceleration  that  goes on to  the

extent.

That we end up finding that the products actually have supersonic speeds by the time they are

getting past this wave way although they started out with subsonic conditions for the reactants

correspondingly what just like how we found in the case of UCJ what this means for the LCJ is

the approach velocities for the reactants is subsonic all right but the flow accelerates through the

wave to exactly sonic conditions beyond for the for the LCJ.



Now if you really think about it this is getting a little bit more fascinating it is unbelievable

fantastic okay how can I have a wave that started out to be subsonic go through a flame and

accelerate so much as to become supersonic is it possible for me to do so the answer is we do not

come across that at all right so in Boones and burners and stuff you do not really get supersonic

flows so what is going on the answer there is outside the picture of what we are talking about we

started out with the mass conservation equation we started out and then we went through the

momentum conservation and then we went through the energy conservation.

We also talked  about  the  species  conservation  but  the  energy conservation  keep in  mind is

essentially coming out of the first law of thermodynamics but we never really considered the

second law okay and, and we will never do that actually, actually except to state that the this part

of the wave that is the strong deflagration is not possible if you now start taking second law into

account.

And there is a reason why you will never really find a way of starting from subsonic flows going

through a strong deflagration to accelerate all the way to supersonic speeds that typically doesn't

happen because it violates second law right and I think I may be able to show that briefly later on

but let me also point out that I will try to show first of all the detonation waves all degeneration

waves in or in fact I should say all detonation waves travel at supersonic speeds and I should also

show that all deflagration waves travel at subsonic speeds.

The way I would like to show this is to consider the CJ detonation and the CJ deflagration I

would like to show that the CJ deflagration is supersonic which means the slowest detonation is

supersonic that means all of the detonations are going to be supersonic and I am going to show

you that the fastest deliberation they see their the lower CJ deflagration is going to be subsonic.

There for all other editions of subsonic right and then we would also consider the downstream

Mach numbers for the you see you CJ in LCJ and show that they are actually won thereby we

can clearly see how these things are demarcated right but before we do that let us go back and

just write out the properties of the Hugoniot curve on where they intersect what the awesome

totes are and all those things the next class thank you.
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