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Welcome to the first lecture on constitutive modeling of piezoelectric materials.  
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So, at first we will look at various approaches used for constitutive modeling. The first  one is 

empirical approach, then there is statistical mechanics based approach and then  there is 

thermodynamics approach. Now, empirical approach as the name suggests, it is based  on 

some experimental observations. So, for example, if we think of a slender  bar like this, steel 

bar maybe and then if I want to measure the elastic modulus we may  put it on universal 

testing machine and measure its response and based on that we can draw  a stress-strain 

curve like this. So, in this axis, it is strain and in this axis, it is stress and then if we are within 

the elastic limit, we may get a variation in this form. 

Now, we can easily fit a straight line to this variation and we can say that the slope of this 

straight line is our Young's modulus (E).  Now, this is quite useful for simple cases, but for 

relatively complex cases, where there  are multiple variables or multiple dimensions, this 

approach is not that easy or that  useful. So, in that case, we need other approaches.  
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Now, among other approaches, there are statistical mechanics based approaches. Now, in the 

statistical mechanics based approach, the material is assumed or considered to be made of a 

lot of atoms and molecules and there are forces between these atoms and molecules and 

accordingly it is simulated, but again if the simulation takes a lot of time, so, they are feasible 

for simple cases only and also the forces between these atoms and molecules, they are often 

not well known.  
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Now, there is one more approach that is thermodynamics based approach. Now, 

thermodynamics based approach requires  that our constitutive model satisfying few 

principles. So, here are those principles. First of all, it should satisfy material objectivity that 

means, the constitutive relation should be invariant with respect to rigid translation or 

rotation. 

In material symmetry, so, if there is any material symmetry, our constitutive model should be 

consistent with that. Now, comes principle of determinism. It says that the current state 

depends on  the complete thermo-mechanical history. So, for example, if we think about the 

relation  between stress and strain it says that stress at the present time should depend on  

the strain at all the previous time steps or in other words stress at the present time  is not 

influenced by strain at any future time step.  Now, we do not always need the entire strain 

history to compute the stress at the present time step. 

For most of the cases or most of the simpler cases, our stress is dependent on strain only at 

the present time step. So, in our modeling also we will  not consider the history dependence. 

So, we will assume that the quantities at the present time step are dependent on the other 

quantities at the present time step only.  
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Then comes principle of equipresence. So, all the constitutive equations should have same set 

of variables. So, we will look into that when we do the constitutive modeling actually. So,   we 

will see that these constitutive equations have the same set of  variables. Then comes 

principle of local action. It says  that current state depends on thermo-mechanical quantities 



only at a small neighborhood. So, again if you look at the stress strain example, so, if I want to 

find out the stress here, so, the stress here is not influenced by the strain here. 

So, to find out the stress here we need strain also here only. Now, there is another subject 

called non local elasticity  where we assume that the stress here is also influenced by strain 

at a  far point, but here we are confined to local  elasticity only. So, our stress here is not going 

to be influenced  by strain at any other point. So, stress here will be influenced by only by 

strain only  at this point. So, that is our principle of local action. 

Now, our constitutive relation has to be consistent with some basic conservation and 

thermodynamics laws. So, these laws are conservation of mass, linear and angular 

momentum and there are first and second law of thermodynamics.  

(Refer Slide Time: 09:02) 

 

Now, we will start with the constitutive modeling. So, first of all, while dealing with 

piezoelectric material,  there are mechanical quantities as well as electrical quantities. So, we 

need to spend some time on electrostatics. 

So, to define various variables related to the electrical problem and their relations and then 

we will go to the conservation laws and all these findings from the electrostatics will be 

helpful there and then we will be in a position to derive the constitutive relation. So, our 

piezoelectric materials are dielectric  materials. So, what is a dielectric material? So, these 

dielectric materials are insulators.  So, they do not conduct an electricity because they do not 

have free charge and these  materials can be polarized on the application of electric field.  So, 

what it means is our dielectric materials have lot of these molecular dipoles. 



This means that the center of the positive and negative charges is not coinciding.  So, this is 

called a dipole. But these dipoles have a diverse orientation. So, they are randomly  oriented 

and due to this random orientation, everything cancels each other.  So, there is no net 

polarization.  

Now, if we apply an electric field here, so suppose this side is positive. So, this attracts the 

negative charges and this negative  side attracts the positive charges. So, because of that the 

orientation takes place in this  form. So, all the negative goes towards this upper side and the 

positive  comes towards the lower side. So, that way we can say that it gets polarized. Now, it 

may not be fully polarized. So, the polarized takes to a certain extent. So, to  which extent it 

gets polarized ? It depends on the amount of electric field that we are applying and also the 

property of the material.   
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Now, let us come to Coulomb's law.  

Now, Coulomb's law says that if we have a charge here Q, we call it Qi and if there is another 

charge Q, So, Coulomb's law helps us find out the amount of force this experience due to this 

or this experience due to this. So, the distance between these two are suppose r. So, we define 

a vector r. Now, the amount of force Q is experiencing due to Qi can be written as – Qi Q by 

four pi epsilon zero ri cube multiplied by ri as a vector.  

�⃗� =
𝑄𝑖𝑄 𝑟𝑖⃗⃗⃗

4 𝜋 𝜖0𝑟𝑖
3 

So, this is ri, the distance between Qi to Q.  



Now, we are finding out force here on Q. So, we call it a test charge and this is the expression 

for the force. Now, here epsilon zero is a constant and its value is 8.8542 × 10-12 C2/N-m2.  So, 

coulomb is a unit of charge.  
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Now, we will define some quantities called electric field and electric potential. So, to do that 

let us assume that there are multiple of this Qi’s. So, I call it Q1, Q2 this may be Qi and this may 

be called Qn. So, there  are n number of these charges and there is a test charge Q. So, you want 

to find out  the force experienced by this due to these charges. So, those are that total force is 

nothing but a vector addition of all these individual forces. 

So, we just have to write the previous expression, but with a summation sign. So, we know 

the force at Q the test charge due to a charge Qi.  So, now if I want to find the total charge due 

to i varying from 1 to n the total force is just the summation of it.  

�⃗� = ∑
𝑄𝑖𝑄 𝑟𝑖⃗⃗⃗

4 𝜋 𝜖0𝑟𝑖
3

𝑛

𝑖=1

 

So, this is our total force experienced by this test charge Q. Now, we define a quantity called 

electric field and by definition electric field is the force experienced by a unit charge. So, these 

are electric field. So, we are denoting electric field by this double struck E.  

�⃗� = 𝑄�⃗⃗⃗� 

Now, if I compare this expression with this expression, becomes the electric field vector 

becomes just this. So, this is the force experienced by a unit charge. So, I just replace Q with 

1. So, the expression reduces to this.  



�⃗⃗⃗� =
𝑄𝑖 𝑟𝑖⃗⃗⃗

4 𝜋 𝜖0𝑟𝑖
3 

Now, let us define something called electric potential. So, this electric field is a vector. It has 

3 components. Now, this can be represented by gradient of a scalar and let us call that scalar 

as phi.  

�⃗⃗⃗� = −∇⃗⃗⃗𝜙 

So, if I expand this quantity, it just looks like this –  

(
𝜕𝜙

𝜕𝑥
𝑖̂ +

𝜕𝜙

𝜕𝑦
𝑗̂ +

𝜕𝜙

𝜕𝑧
�̂�) 

So, this is a vector and if I equate that with this vector, we can get an expression of phi and 

that phi comes to be this. This is our electric potential phi.  

𝜙 =
𝑄𝑖

4 𝜋 𝜖0𝑟𝑖
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Now, we will talk about potential due to line surface and volume charges. So, let us imagine 

that we have a line over which charge is distributed and we want to find out electric field or 

potential here. 

 

 



Now, let us imagine that we are taking a small segment of this line and let us call it dl and the 

vector that is joining this dl with this point is r. It is r vector. Now, this is a very small segment 

dl. So, that is why the vector joining the beginning of this segment with this point or the 

beginning of this segment with this point are almost same. Now, if that is so, we can define 

the potential as this. 

𝜙 = ∫
𝜆

4 𝜋 𝜖0𝑟
𝑑𝑙

 

𝐿

 

So, here the total charge in this segment is lambda dl. So, because of that the potential is 

lambda dl by four pi epsilon zero r and then if we integrate it over the line length, I mean the 

entire line there it is. We get the total potential here.  

Now, similarly if there is a distribution of charge over a surface and that charge per unit area 

is q then we can rewrite the expression as - four pi epsilon zero r and accordingly where q is 

charge per unit area. So, q is charge per unit area.   

𝜙 = ∫
𝑞

4 𝜋 𝜖0𝑟
𝑑𝑠

 

𝑆

 

Similarly, if there is distribution of charge over a volume and charge per unit volume is rho 

we can write this as simply this. So, rho is charge per unit volume.  

𝜙 = ∫
𝜌

4 𝜋 𝜖0𝑟
𝑑𝑣

 

𝑉
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Now, we will go to another topic, I mean another definition and that is voltage. Now, voltage  

means work done on moving unit charge from one point to another point. So, first let us define 

work done in moving a charge Q by dr in an electric field E. 

Let us define the dw. So, we are moving this charge by a small amount dr. So, as the amount 

is small, we can assume that along that small length, during that small displacement the 

electric field remains constant. So, the force is Q multiplied by E and that force dot dr is the 

amount of work done. Now, we know the relation between E, I mean electric field and 

potential. So, from that we can write this as this –  

𝑑𝑤 = 𝑄�⃗⃗⃗� ∙ 𝑑𝑟 = −𝑄∇⃗⃗⃗𝜙 ∙ 𝑑𝑟 

Now, we just integrate it and find out work done in moving a charge Q from point 1 to point 

2 and that becomes this. We just integrate dw over 1 to 2 and it takes this form. Now, del phi 

dot dr, this can be written as d phi and then this quantity on being integrated gives me Q 

multiplied by phi 1 minus phi 2. So, we have Q multiplied by potential difference.  

∫ 𝑑𝑤
2

1

= ∫ −𝑄∇⃗⃗⃗𝜙 ∙ 𝑑𝑟
2

1

= ∫ −𝑄𝑑�⃗⃗�
2

1

= 𝑄(𝜙1 − 𝜙2) 

Now, as per our definition so voltage is defined as work done in moving unit charge from 1 to 

2. So, that tells us that voltage is just phi 1 minus phi 2.  

𝑉 = 𝜙1 − 𝜙2 

And if we want to relate it with the electric field this gives us electric field is equal to minus 

of gradient of voltage.   

�⃗⃗⃗� = −∇⃗⃗⃗𝑉 
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Now we will talk about potential due to dipole. So, let us imagine that we have 2 points, point 

1 and point 2 with charge - q and + q and the vector from - q and + q is a vector. So, the dipole 

moment that is created is p is equal to q a.  

𝑝 = 𝑞�⃗� 

So, let us name them, point 1, point 2 and let us say that we are interested to find out potential 

at another point 3. Now if I join point 1 to point 3 and the corresponding vector is r2 and if 

we join point 2 to point 3, the corresponding vector is r1 and the angle between 1-2 and 1-3 

is I mean the vector a and vector r2 is theta. So, potential at 3 is 1 by 4 pi epsilon then potential 

due to the positive charge which is q. So, q by r1 minus that due to the negative charge.   

1

4𝜋𝜖0
(

𝑞

𝑟1
−

𝑞

𝑟2
) 

Now we can write this expression as q multiplied by r1 minus r2 by r1 r2.  

=
1

4𝜋𝜖0
𝑞 (

𝑟2 − 𝑟1

𝑟1𝑟2
) 

Now, let us put a perpendicular from point 2 to the line 1-3. So, this is a perpendicular. Then 

this becomes a cosine theta and this can also be written as r2 minus r1 is equal to a cosine 

theta. 

𝑟2 − 𝑟1 = 𝑎 cos 𝜃 

 

And then we can say that r2 dot a is r2 a cosine theta. 



𝑟2⃗⃗⃗⃗ ∙ �⃗� = 𝑟2𝑎 cos 𝜃 

Now please understand that the distance between this positive and negative charge is much 

less than the distance 1-3 and 2-3 and that is why we could write this and again with that 

assumption r1 is equal to r2 is equal to r.  

𝑟2 ≈ 𝑟1 = 𝑟 

We can write r2 dot a is equal to r a cosine theta or r dot a is equal to r a cosine theta.   

𝑟2⃗⃗⃗⃗ ∙ �⃗� = 𝑟𝑎 cos 𝜃 

𝑟 ∙ �⃗� = 𝑟𝑎 cos 𝜃 

So, if we put all these approximations here. So this q then we can write, so this is r2 minus r1, 

not r1 minus r2 if I do the subtraction. So, then it becomes r dot a divided by r cube and we 

know that q multiplied by a is the dipole moment vector p. 

=
𝑞

4𝜋𝜖0
(

𝑟 ∙ �⃗�

𝑟3 ) 

 So, we can say p dot r divided by 4 pi epsilon r cube. So, that is the potential at point 3 due to 

the dipole.  

=
𝑝 ∙ 𝑟

4𝜋𝜖0𝑟3
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Now we will talk about potential due to volume with a dipole. So, let us imagine that we have 

a volume V that contains lot of these  dipoles and free charge as well. We can say that for 

dielectric material free charge is 0, but let us have it for the time being we can always say later 

on that it is 0. 

Now within this volume let us consider a small volume dV and the vector joining the origin to 

dV is r prime and let us say that we are interested in finding out the dipole at a point and the 

vector joining this is r. So, the vector that joins dV with  our point of interest is r minus r 

prime. So, this is r minus r prime.  Now let us define something called polarization density. 

Polarization density is total dipole moment at volume dV divided by dV and assumes dV 

contains free charge rho f dV where rho f is our free charge density. 

Now with this we can say that the total potential at that point of interest is 1 by 4 pi epsilon 

0, then our potential due to that charge which is rho dV divided by the magnitude of r minus 

r prime and dV is already there plus 1 by 4 pi epsilon 0. Then our total polarization at that 

volume dV is PdV and because of that the potential at our point of interest is this P dot r minus 

r prime divided by magnitude of r minus r prime cube of that.  

𝜙 =
1

4 𝜋𝜖0
∫

𝜌𝑓

|𝑟 ⃗⃗⃗ − 𝑟′⃗⃗⃗|
𝑑𝑣

 

𝑣

+
1

4 𝜋𝜖0
∫

�⃗⃗� ∙ (𝑟 ⃗⃗⃗ − 𝑟′⃗⃗⃗)

|𝑟 ⃗⃗⃗ − 𝑟′⃗⃗⃗⃗ |
3 𝑑𝑣

 

𝑣

 

Now let us define a gradient vector with a prime. Gradient of r minus r prime. So, this gradient 

with a prime is taken, gradient with respect to r prime. 

So, here we do the integral over dV. So, this small volume dV at x, y,  z is going to change. So, 

if I take the gradient with respect to that let us denote   this as gradient with a prime. That is 

equal to a gradient, if it is taken with respect  to this point, our of interest with a minus of that. 

So, gradient with a prime is equal to minus of gradient without a prime when it is taken with 

respect to this point and that is equal to r minus r prime divided by r minus r prime magnitude 

of that with a cube.  

∇′⃗⃗⃗⃗ 1

|𝑟 ⃗⃗⃗ − 𝑟′⃗⃗⃗|
= −∇⃗⃗⃗

1

|𝑟 ⃗⃗⃗ − 𝑟′⃗⃗⃗|
=

𝑟 ⃗⃗⃗ − 𝑟′⃗⃗⃗

|𝑟 ⃗⃗⃗ − 𝑟′⃗⃗⃗⃗ |
3 

So, now, this expression r minus r prime divided by the r minus r prime magnitude of that 

with cube, this we can replace by this gradient. 
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And after we do that it becomes phi is equal to 1 by 4 pi epsilon volume then we have rho  f 

and cube of that plus P dot gradient with a prime of the magnitude of r minus r prime dV.  

𝜙 =
1

4 𝜋𝜖0
∫ [

𝜌𝑡

|𝑟 ⃗⃗⃗ − 𝑟′⃗⃗⃗⃗ |
3 + 𝑝.⃗⃗⃗ ⃗ ∇′⃗⃗⃗⃗ 1

|𝑟 ⃗⃗⃗ − 𝑟′⃗⃗⃗⃗ |
] 𝑑𝑉

 

𝑣

 

Then we can further do some manipulation, first term remains same. Now, this can be  written 

as minus of delta dot P. So, here gradient with respect to a prime. So, plus delta prime dot this 

because we can always say that this gradient of P by mod of r minus r prime is equal to P dot 

gradient of 1 by mod of 1 minus r prime plus 1 by r minus r prime plus gradient of P. So, that 

is why we can rewrite this expression as this.   

𝜙 =
1

4 𝜋𝜖0
∫ [

𝜌𝑡

|𝑟 ⃗⃗⃗ − 𝑟′⃗⃗⃗⃗ |
3 −

1

|𝑟 ⃗⃗⃗ − 𝑟′⃗⃗⃗⃗ |
∇′⃗⃗⃗⃗ . 𝑝 ⃗⃗⃗ ⃗ + ∇′⃗⃗⃗⃗ ∙

𝑝 ⃗⃗⃗ ⃗

|𝑟 ⃗⃗⃗ − 𝑟′⃗⃗⃗⃗ |
] 𝑑𝑉

 

𝑣

 

Now, if I further do this, then we get rho f minus dV. Now, this is a volume integral with a 

gradient. So, we can always write that as  P dot n, n means normal to the surface and the 

surface integral. So, we convert this volume integral to a surface integral and write like this. 

𝜙 =
1

4 𝜋𝜖0
[∫ (

𝜌𝑡

|𝑟 ⃗⃗⃗ − 𝑟′⃗⃗⃗⃗ |
−

∇′⃗⃗⃗⃗ . 𝑝 ⃗⃗⃗ ⃗

|𝑟 ⃗⃗⃗ − 𝑟′⃗⃗⃗⃗ |
) 𝑑𝑉

 

𝑣

+ ∫
𝑝 ⃗⃗⃗ ⃗. 𝑛 ⃗⃗⃗⃗

|𝑟  ⃗⃗⃗ − 𝑟′⃗⃗⃗⃗ |
𝑑𝑆

 

𝑆

] 

Now, this term has the same dimension as rho f. So, delta prime dot P has the same dimension  

of rho f. So, delta prime dot P with a minus can be called as rho b. So, we say rho f by  plus rho 

b dV and this we give a name P dot n we give a name we call it rho s ds.   



𝜙 =
1

4 𝜋𝜖0
[∫ (

𝜌𝑓

|𝑟 ⃗⃗⃗ − 𝑟′⃗⃗⃗⃗ |
+

𝜌𝑏

|𝑟 ⃗⃗⃗ − 𝑟′⃗⃗⃗⃗ |
) 𝑑𝑉

 

𝑣

+ ∫
𝜌𝑠

|𝑟  ⃗⃗⃗ − 𝑟′⃗⃗⃗⃗ |
𝑑𝑆

 

𝑆

] 

So, rho b we call a bound charge and rho s we called surface charge. So, we found out the 

expression for potential in due to a dipole continuum and while deriving this expression we 

got two more terms; one is a bound charge, one is a surface charge. We have a free charge 

also, but later on we can say that our free charge is 0. So, this is the total expression of 

potential due to a continuum containing dipoles.  

So, with this I would conclude the lecture here.  

Thank you. 


