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Today, we will talk about analyse of beam with ER and MR fluid layer.  

Now, so far whatever we have discussed on the ER and MR fluids, they are different flow 

mode analysis. Those can be found in the book by Chopra and Sirohi that is our text book, 

and also the paper that we have referred to. For this discussion where we are analyzing 

beam with an ER and MR fluid, we would refer to this paper, that is referred here. In some 

cases, our way of formulation or notations can be little different from them just so that we 

are consistent with the kind of formulation that we have done so far. But the example and 

the development of the formulation is taken from this paper. 

So, here we have a beam and this beam is a sandwich beam, sandwich in the sense that it 

has two layers at that two sides, top and bottom and the mid layer is different from the top 

and bottom layer. So, it has three layers. The top layer is an elastic layer, elastic means it 

is an elastic solid, the bottom is also an elastic solid, the mid layer, at the core of the mid 

layer, we have this red zone is ER or MR fluid. And this fluid is covered by a - I would say 

a box made of rubber. So, this rubber region we can see in the cross-sectional view in the 

x z plane that is at the periphery. Similarly, in the cross-sectional view in the x y plane, we 

also it is seen in the periphery. So, this entire rubber region which - so this is the wall of 

the rubber, the thickness of br. So, that rubber region contains the ER MR fluid inside it. 

Now, the dimension of the beam along the direction x is L, the thickness of the solid layers 

are - we can call h1, h2 and h3. And then, we have here, the dimensions. So, if we look at 

the entire system in the x y plane, in a cross-sectional view, we can see that the width of 

the wall of the rubber is br, and the entire width is b.  

So, when this beam vibrates, the rheological fluid, because of its damping, dissipates the 

vibration. So, that brings damping to it and that damping can be controlled by controlling 

the electrical, magnetic field in the rheological field. Now, in this analysis there are some 

assumptions - first of all the axial stiffness of the fluid layer is negligible. That means, this 

mid region, the core region, it does not have any axial stiffness. The only axial stiffness 

comes from this rubber region, but that is much less, I mean, the dimension of it is much 

less as compared to the dimension of the core fluid. So, this has negligible axial stiffness 

that also means that normal stress is 0. So, in the fluid region, normal stress is 0 and this 



thickness h1, h2 and h3, they are much smaller as compared to L, and their sum h1 plus h2 

plus h3 is also quite small. So, we can have Euler Bernoulli assumption here. 

So, we make Euler Bernoulli beam assumption - there is no slip between the elastic and 

fluid layer, and the elastic solid their damping is negligible and the transverse displacement 

is function of x only. So, we denote the transverse displacement as w. So, w is just a 

function of x, and that means, the quantity w does not vary along the depth or along the 

width. So, with these assumptions, we will do our analysis.  
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Now, from this kinematics, first we have to define the shear stress in the fluid layer. Now, 

the shear stress in the fluid layer is gamma, which we can say del w by del x plus del u by 

del z. So, that is the shear stress in the x z plane.  

𝛾 =
𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
 

Now, del w by del x we know that remains constant along the cross section, del u by del z 

we have to find out in terms of some quantities. So, we find out del u by del z in terms of 

this w as well as the axial displacement, displacement along x direction at the middle of 

the top layer and the middle of the bottom layer. Now, let us denote u1 as the displacement 

at the middle of the top layer. 

So, at any x, u1 is denoted as the displacement at the middle of the top layer and u3 is the 

displacement at the middle of the bottom layer. So, u1 and u3 are displacements at the 

middle of top and bottom layers. If it is so, then the displacement at this junction here at 



the bottom of the bottom layer. So, the junction between the core and the top layer can be 

written as. So, we can say that - as we know this is as per our definition, this is h3 and this 

is h2, h2 plus h3. So, u at z equal to h2 plus h3 can be written as - u evaluated at z equal to 

h2 plus h3 is our u1 plus h1 by 2 multiplied by del w by del x.  

𝑢 at     𝑧 = ℎ2 + ℎ3 

𝑢|𝑧=ℎ2+ℎ3
= 𝑢1 +

ℎ1

2

𝜕𝑤

𝜕𝑥
 

Now, because this is a Euler Bernoulli beam, we know that the plane section remains plane 

before and after bending. So, if at any section, it has our 3 layers and if it bends, then after 

bending it takes a form like this, because we know that based on the Euler Bernoulli 

principle, plane section remains plane before and after bending. So, if the displacement at 

the middle of the top layer is u1, then the displacement here is u1 plus this additional amount 

and this additional amount is nothing, but del w by del x multiplied by this height and this 

height is our h1 by 2. Now, because we are going towards negative z. So, we are adding it 

because we know that u as we go up along z direction is minus z into del w by del x, here 

we are going in the downward direction. So, this quantity is additive. So, we have u1 plus 

h1 by 2 into del w by del x.  

If this same quantity was to be found out with respect to this, the mid plane of the entire 

beam, then it would be just minus of del w by del x multiplied by h2 by 2, but here we are 

finding out with respect to the mid of the top layer. So, it is u1 plus h1 by 2 multiplied by 

del w by del x. 

Similarly, u at z equal to h3, if you want to find out that means, here and that if you want 

to find out based on u3, then that becomes u at z equal to h3 is equal to u3 minus h3 by 2 

into del w by del x.  

𝑢 at     𝑧 = ℎ3 

𝑢|𝑧=ℎ3
= 𝑢3 −

ℎ3

2

𝜕𝑤

𝜕𝑥
 

So, we have found out u at the junction between layers 2 and 3 and layers 1 and 2. So, if I 

want to find out del u by del z now, then del u by del z is just the difference of u between 

here and here divided by the thickness of that layer h2. So, del u by del x is u at z equal to 

h2 plus h3 minus u at z equal to h3 divided by h2. And if we do that, then the quantity that 

we get is - u1 plus h1 by 2 into del w by del x minus u3 plus h3 by 2 into del w by del x and 

then that quantity is divided by h2. Now, we can put this. So, this is del u by del z, not del 

x.  



𝜕𝑢

𝜕𝑧
=

𝑢|𝑧=ℎ2+ℎ3
− 𝑢|𝑧=ℎ3

ℎ2
=

𝑢1 +
ℎ1

2
𝜕𝑤
𝜕𝑥

− 𝑢3 +
ℎ3

2
𝜕𝑤
𝜕𝑥

 

ℎ2
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So, if we put that this del u by del z here, that gives me gamma. So, after putting that 

gamma becomes 2 into h by 2 plus h1 plus h3 divided by 2 h2 into del w by del x plus u1 

minus u3 by h2. And then that quantity can be written as - D by h2 into del w by del x plus 

u1 minus u3 by h2, where D is defined as a quantity, which is h1 plus h3 by 2 plus h2. 

𝛾 =
2ℎ2 + ℎ1 + ℎ3

2ℎ2

𝜕𝑤

𝜕𝑥
+

𝑢1 − 𝑢3

ℎ2
=

𝐷

ℎ2

𝜕𝑤

𝜕𝑥
+

𝑢1 − 𝑢3

ℎ2
 

where,      𝐷 =
ℎ1 + ℎ3

2
+ ℎ2 

Now, we have to find a relation between u1 and u3. So, that can be found out by balancing 

the normal forces along x direction. So, for that, we can write longitudinal forces along x 

in the elastic layers and those are F1 equal to E1 A1 del u by del x, because we know del u 

by del x is strain, if I multiply that with the corresponding Young's modulus that gives me 

stress, and A1 is the cross-sectional area of the first layer, the top elastic layer. And 

similarly, we have F3 is equal to E3 A3 into del u3 by del x. So, again A3 is the cross-

sectional area of the bottom layer. 

𝐹1 = 𝐸1𝐴1

𝜕𝑢1

𝜕𝑥
                     𝐹3 = 𝐸3𝐴3

𝜕𝑢3

𝜕𝑥
 



Now, we know that there is no externally applied normal force. So, F1 plus F3 should be 0, 

that is our equilibrium condition, and that gives me E1 A1 multiplied by del u by del x is 

equal to or minus of E3 A3 into del u3 by del x. Now, we can integrate both sides and that 

gives us E1 A1 u1 equal to minus of E3 A3 u3.  And then, we can write u3 is equal to minus 

of e into u1, where e1 is defined as, small e1 is defined as - capital E1 A1 divided by capital 

E3 into A3.  

𝐹1 + 𝐹3 = 0  

⇒ 𝐸1𝐴1

𝜕𝑢1

𝜕𝑥
= −𝐸3𝐴3

𝜕𝑢3

𝜕𝑥
 

⇒ 𝐸1𝐴1𝑢1 = −𝐸3𝐴3𝑢3 

⇒ 𝑢3 = −𝑒1𝑢1 

where,     𝑒1 =
𝐸1𝐴1

𝐸3𝐴3
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So, this relation helps me get rid of one of the unknowns in the problem. Now, in the 

problem I have two unknowns, one is w and one is either u3 or u1. So, now we will write 

in the formulation the unknown as u1. So, we will consider u1 as the unknown and we 

define u1 as just u, and we will solve the problem.  



Now, before doing that we have to write the shear stress also. Now, the shear modulus at 

the mid layer. So, mid layer has our rubber plus ER or MR fluid. Now rubber and ER MR 

fluid have different shear modulus. So, we define something called equivalent shear 

modulus of that layer and that we just do by the rule of mixture. So, for that we write G 

bar, the shear modulus at the mid layer is equal to Gr multiplied by br by b plus G star 

multiplied by 1 minus br by b.  

𝐺̅ = 𝐺𝑟

𝑏𝑟

𝑏
+ 𝐺∗ (1 −

𝑏𝑟

𝑏
) 

So, Gr is shear modulus of the rubber that is used and G star is the shear modulus of the 

fluid. Now, here we can see that - this is the ratio of the width of the rubber multiplied by 

the entire width of the rubber plus the ER MR fluid. And this is the ratio of the width of 

the ER MR fluid layer divided by the width of the entire beam. So, the equivalent shear 

modulus G bar is just a weighted combination of the individual shear moduli, here the 

weight is the ratio of the width.  

Now, for G star, which is the shear modulus of the ER and MR fluid, we use the constitutive 

relation that we discussed last week based on the paper by Chen and Yu.  So, here we saw 

the viscoelastic property of the MR fluids. Here, the pre yield viscosity was viscoelasticity 

was incorporated in the model and that is what we are going to use here. So, G star is - 

again as we saw that G star has two parts -   one is G prime plus i into G double prime. So, 

G prime is storage modulus and G double prime is loss modulus.  

𝐺∗ = 𝐺′ + 𝑖𝐺" 

So, this is the same model we are going to use for the pre yield condition, and for the post 

yield, it is just tau is equal to tauy plus mu into gamma dot, which is the Bingham plastic 

model. So, this is Bingham plastic model. 

𝜏 = 𝜏𝑦 + 𝜇𝛾̇ 
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Now, with all these - we have defined the shear strain in terms of the displacement and we 

have defined the shear modulus. So, we can now write shear stress.  

Now with all these, we can write all the different energies, and from there we will write 

the variational formulation. So, we have two elastic layers at the top and bottom. Now, the 

strain energy of the two layers can be written as this. So, half into the integral of E1 A1 

multiplied by del u by del x whole square is the strain energy of the top elastic layer. So, 

we are writing u as just u1, because we have got rid of u3, because of the relation between 

u1 and u3. Now, this is E3 A3 small e square multiplied by this quantity integrated and 

multiplied by half, that gives me the strain energy of the bottom layer. Now, these strain 

energies are the strain energies due to the extension of those layers. Now, those layers bend 

also. So, because of the bending these are the strain energy.  

Now, this I1 and I3 these are the moment of inertia with respect to their own centroid. So, 

now, I1 and I3 are moments of inertia of the top elastic layer and the bottom elastic layer, 

and these are defined with respect to their own centroid. Because we have seen that in these 

three layers, if I define the moment of inertia with respect to here, then I need to define the 

moment of inertia of this layer with respect to its own centroid and shift it using the parallel 

axis theorem. If I do that then, I am writing everything in terms of the centroid of the three 

layers combined. In that case, these energies do not come into picture and in that case after 

shifting by parallel axis theorem, whatever the moment of inertia expression I have, that 

gives us - because of that I get these two-energy combined in just this expression. But here, 

because I am writing these two layers separately, I am writing the strain energy due to the 

extension of its mid layer here and the bending of this layer itself where I is considered 

with respect to the centroid of this layer itself. So, that is why they are written separately. 



So, if I can write them separately, if I take the centroid of the layer itself or I can write it in 

a combined way, if I take the centroid at the middle of the combination of these three layers. 

So, here we have written them separately. So, you have two variables w and u. So, these 

I's are moment of inertia with respect to their own layer.  

Now, comes shear strain energy of the mid layer. We have defined the shear strain at the 

mid layer and we know the shear modulus which is G gamma. So, again we do half into G 

into A2, and then we multiply the shear strain square and that gives us the shear strain 

energy of the mid layer. Kinetic energy is considering motion along z of the elastic and 

fluid layers, which is this. So, half into mass into velocity square in the transverse direction.  

So, here this is the contribution from layer 1, layer 2.  This is the contribution from the 

rubber layer. So, this is rubber density and this is the density of the ER and MR fluid. This 

is the density of the bottom elastic layer. This is the density of the ER and MR fluid. So, 

this is ER  MR fluid density. And, this is density of elastic layer 1. This is density of elastic 

layer 3.   
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Now, we will write the other component of the kinetic energies which is T2 here.  So, these 

are the kinetic energy due to the extension of the layers, and then we have the kinetic energy 

considering rotation of the MR fluid layer. So, it is rotation. So, it is rotational motion. So, 

far we have neglected the kinetic energy due to rotation, but here it is incorporated. It can 

be neglected also, if the layer thickness is small. Now, here again I2 is the moment of inertia 

of that fluid layer with respect to its own centroid. And here, rotation is defined as del w 

by del x minus del u by del z. So, we know del u by del z. So, we can write the rotation.  
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So, after having all the energies now we can make some approximation for our variables u 

and w, and put it here. And then, we can minimize T minus U that means, the total kinetic 

energy minus the total strain energy, or we can make a variational form, and then put it in 

the variational form. And then, form a set of ordinary differential equation that we want. 

So, this is the variational form, if I take variation of all the energies. So, we have T1, T2, T3 

and V1, V2, V3. So, if I take T1 plus T2 plus T3 minus V1 minus V2 minus V3, and again we 

know the Hamilton's principle says that its integral over any two arbitrary time t1 and t2 is 

0, and we know how to get into this kind of equations from this principle. Now, one thing 

to note in so far in all the formulations we have denoted our strain energies as U1, U2, U3. 

Here, we have denoted them as V1, V2, V3, but they are same.  
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Now, after that the variational form that we get is this. And then, we put some 

approximation. U is approximated using a set of basis functions qu phiu and w is 

approximated using a set of basis functions phiw qw. And then, if we put it there, then we 

get equations of this form plus variation of quNu, variation of qw1. We have done this kind 

of formulation several times in this course so far. So, we know that because these are 

independent variations. So, each of the terms in the bracket is 0 and that gives me a set of 

equations of this form. So, set of Nu plus Nw equations. So, in this equation the mass matrix 

M takes a form like this - Muu Muw Mwu Mww. Similarly, the stiffness matrix takes a form 

like this - Kuu Kuw and Kwu Kww. So, Muu is this. Muw is this.  
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We can just look into the variational formulation and we can figure out the kind of forms 

this matrix elements take. So, this is Mww. Similarly, these are the elements of the stiffness 

matrix.  
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So, this is the final set of ordinary differential equations that we got. And these are free 

vibration equations, since there is no externally applied force. So, the right hand side is 0. 

Now, this gives rise to an Eigen value problem because if we consider q as q0 multiplied 



by e to the power i omega t, and then put it here, that gives me minus of omega square M 

multiplied by q0, multiplied by e to the power i omega t because if I differentiate this 

quantity twice with respect to t, then minus omega square comes out. And e to the power i 

omega t is common in both the terms. So, I do not need that. Plus, we have q0 equal to 0. 

And then, we can write this entire quantity as - so, these are Eigen value problem.  

{𝑞} = {𝑞0}𝑒𝑖𝜔𝑡 

−𝜔2[𝑀]{𝑞0} + [𝐾]{𝑞0} = {0} 

[[𝐾] − 𝜔2[𝑀]]{𝑞𝑜} = {0} 

Here, one thing to note is that this K has contribution from the shear in the fluid layer and 

the shear modulus of the fluid layer was a complex function. So, by solving this Eigen 

value problem, from the Eigen values, we can estimate the damping present in the system. 

For different values of the electric field, we can find how the damping changes in the 

system and that kind of study can be done from this equation.  
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So, that brings us to the end of this lecture, and also it brings us to the end of this course.  

I would like to thank all the participants for their interest. I hope you enjoyed this, and I 

also sincerely appreciate our teaching assistants Mr. Vaibhav Mishra, and Professor Sunny 

Akhtar, and I also thank the entire NPTEL team.   

Thank you. 


