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So, today we will continue our discussion on flow mode analysis using Bingham biplastic 

model. This was the Bingham biplastic model that we discussed.  
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And then, we saw that this kind of model divides the entire region into a several parts. So, 

at the center there is the plug region where the shear strain rate is 0. And then, at the two 

sides of it there is a region where the shear strain rate is - the magnitude of the shear strain 

rate is less than gamma dot, gammat dot and then beyond that there is a region where the 

magnitude of the shear strain rate is more than gammat dot. And we are analyzing only half 

of it, half of the domain because of the symmetry. So, in the last class, we found out the 

velocity equation in region 5. 
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Today, we will continue from that. So, we will find out the equation of velocity in region 

4. Now, in region 4, the equation of shear stress is tau y equal to minus of tauy plus mu0 

into del u4 by del y. So, u in region 4 is denoted as u4, and that is equal to minus del P by 

L multiplied by y. Now, from here, we can write del of u4 by del y equal to tauy minus del 

P by L into y.  And then, we can integrate the equation that gives us u4 equal to tauy. So, 

there was a mu also here, mu0 which was missing. So, after integrating, we find tauy by 

mu0 into y minus del P by mu0 L multiplied by y square by 2, and then we have plus C2.  
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Now, we have to evaluate the constant, C2 and that we have evaluated by putting the 

condition that - in this region, in this dash region, the junction between region 5 and region 

4, the velocity obtained from the equation that we are dealing with now, is the same as the 

velocity that was obtained from the, that can be obtained from the velocity equation for 

region 5. So, the velocity is continuous between region 5 and region 4. If we apply that 

condition so, that just can be written as u4 at yt is equal to u5 at yt. Now, if we apply that 

condition, then we can evaluate the constant C2. And after evaluating the constant C2, if we 

put it back in the equation - so, this helps us evaluating C2. And then, after evaluating C2, 

we can find out our u4 y as y minus yt by mu0 multiplied by tauy minus del P by 2 L 



multiplied by y plus yt, and then we have plus yt minus d by 2 divided by mu1 multiplied 

by tauy plus mu0 minus mu1 into gammat dot plus y plus d by 2 multiplied by minus del P 

by 2 L. 
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Now, that becomes our expression for u4 y. And then, we know that yt is equal to mu0 

gammat dot multiplied by L by delta P plus tauy multiplied by L by delta P.  

𝑦𝑡 = 𝜇0

�̇�𝑡𝐿
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So, we can put this here and here also. If we do that, then we can find out our - so, we can 

put this yt here as well as here. After doing that, our expression for u4 y becomes just this 

- 1 by mu0 multiplied by tauy minus delta P divided by 2 L, y multiplied by y plus 1 by 2 

mu1 L multiplied by delta P d square by 4 minus L d into tauy, we can put another - 

multiplied by tauy plus mu0 minus mu1 into gammat dot, and then, plus L square by delta P 

multiplied by tauy plus gammat dot mu0 whole square of it and then 1 minus mu1 by mu0. 

That is the entire expression for u4 as a function of y.  
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Now, we want to look at the plug region, and in the plug region, we know that the velocity 

is continuous. So, whatever the velocity as u4, whatever the velocity that we get at y is 

equal to y yield, that means, here, whatever the velocity we get at yy, that means, here, the 

junction between regions 3 and 4, based on the velocity equation at region 4, that same 

velocity is valid throughout the entire third region. So, we can say that u at region 3, we 

have u3 as a function of y is just u4 that is obtained at yy, and we know that yy is equal to 

delta of 2 which is tauy L by delta of P, delta P.  

𝑢3(𝑦) = 𝑢4(𝑦𝑦)           ⇒ 𝑦𝑦 =
𝛿

2
=

𝜏𝑦𝐿

Δ𝑝
 

And then, u3 becomes tauy square L divided by 2 mu0 delta P plus 1 by 2 mu1 L multiplied 

by delta P d square by 4 minus L d multiplied by tauy plus mu0 minus mu1 into gamma dot, 

and then, plus we have L square by 4 P multiplied by tauy plus gammat dot mu0 whole 

square of that multiplied by 1 minus mu1 by mu0. So, that is our u3 and that is the constant 

velocity that is valid over the entire third region.   
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Then what we can do is - we can do some non-dimensionalization. So for that, again we  

can write delta bar as delta by d. Then we define deltat as a new variable which is just twice 

of yt, which means delta in this region, this dimension from here to here, whereas delta t is 

the dimension from here to here. The distance between here to here. So, the distance 

between the junction of regions 1 and 2, and the junction of regions 4 and 5. And then 

again, we can further non-dimensionalize deltat bar equal to deltat by d.  



𝛿̅ =
𝛿

𝑑
 ,        𝛿𝑡 = 2𝑦𝑡           and         𝛿�̅� =

𝛿𝑡

𝑑
 

So, after all this, we can write u1 as a function of y in a non-dimensional form as delta P d 

square by 8 L, multiplied by 1 minus delta t bar square divided by mu1 plus deltat bar minus 

deltay.  

So, these are the non-dimensional terms that we will be using. Now with this, these 

velocities can also be written in a non-dimensional form and we would not do that. 

So, after that we will find out the equivalent damping coefficient, and for that again we 

have the same approach. We first find out the total flow rate, and then we equate the total 

flow rate with a flow rate which would have been there, if there was a uniform velocity um. 

And that would give us equivalent uniform velocity um. Then we divide that velocity by 

the force and that would give us the damping  coefficient. So, for that the first we have to 

find out the total volumetric flow rate. So, total flow rate Q is equal to Q1 plus Q2 plus Q3 

plus Q4 plus Q5. And from that, we can write this as - and we know that Q2 and Q4 are 

same, Q1 and Q5 are same because of the symmetry. So,with that, we can write our total 

flow  rate. So, we can write this as 2 multiplied by yt to d by 2, and we have b u5 d y. So, 

if we again look at the diagram, it is between yt and d by 2, where u5 is valid. So, the 

corresponding flow rate is just u5 multiplied by b integrated over the region. 

We multiply this by 2 because of the symmetry. And then, we have 2 and then, a region 

from yy to yt, and here we can integrate b u4 d y, and then we have 0 to yy, and here, we 

integrate just b multiplied by u3 d y.  

𝑄 = 𝑄1 + 𝑄2 + 𝑄3 + 𝑄4 + 𝑄5                                  

= 2 ∫ 𝑏𝑢5𝑑𝑦
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+ 2 ∫ 𝑏𝑢4𝑑𝑦

𝑦𝑡

𝑦𝑦

+ 2 ∫ 𝑏𝑢3𝑑𝑦

𝑦𝑦

0

 

Because 0 to yy is half of the plug thickness, so, if we just multiply by 2, we get the total 

flow rate due to the entire plug thickness. And here, u3 is constant over the plug, so, we can 

just multiply by the thickness of the region and that will give the corresponding flow rate. 

So, after doing everything, the total flow rate comes as - delta P, then we have b, d cube by 

12 mu0 L, then 1 minus deltay bar multiplied by 1 plus deltay bar by 2 minus 1 minus deltat 

square. So here, deltay bar is just our delta bar because that is defined between the region 

yy and minus yy. So, we can call it deltay bar also. And then, we have 1 plus deltat bar by 2 

multiplied by 1 minus mu0 by mu1 and that is our total flow rate Q.  

𝑄 =
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And then, we equate that to an equivalent, the total - so, this gives us the total flow rate and 

then we equate that too. Flow rate that would have been there because of uniform velocity 

um. So, we equate this Q with um b d. 

And from there, we can find out um. Also, we have the force F is equal to delta P multiplied 

by b d. So, now if I divide F by um, that gives me the effective active damping coefficient. 

So, that becomes our delta P b d divided by Q by b d. And if we do that finally, the active 

damping coefficient comes to be 12 mu0 L into our b square d square divided by b d cube. 

And then, we have here, 1 by 1 minus deltay bar whole square into 1 plus deltay bar by 2 

multiplied by 1 minus deltat bar whole square, and then we have 1 plus deltat bar by 2 and 

1 minus mu0 into mu1.  
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So, this is our equivalent damping in the active mode and then we can find out the 

effectiveness of this active damping by dividing that by the active damping in the inactive 

mode. And for that, we can just find that out by Ceq a divided by Ceq 0. And that again, 

using the same approach, comes just as 1 by 1 minus deltay square, multiplied by 1 plus 



deltay bar by 2, just this denominator should come here, multiplied by this, into 1 plus deltat 

bar by 2 multiplied by 1 minus mu0 by mu1.  
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2
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So, what we are doing here is to find out the inactive damping, we are just setting these 

terms deltay bar and deltat bar to 0, because when the fluid is not active, at that time, we do 

not have the concept of yielding. So, the constitutive relation is just that of the Newtonian 

fluid. That means that the region does not get divided into plugs or the region where, I 

mean, regions 3 and 4 do not come into the picture. All these divisions do not come. So, 

the entire region has just 1 constitutive relation, which is mu into the shear strain rate.  
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Now, because these quantities are 0. So, Ceq at 0 is - just this. So, if I divide this quantity 

by just this, we have this as -  so, if I divide this quantity just by this. So, we have the Ceq 

active by Ceq 0 as this. Here we can see that because the constitutive relation is piecewise 

linear, this damping coefficient does not depend on the velocity. In the previous case, when 

we are dealing with the Herschel Berkeley model, there the constitutive relation was non-

linear. 

So, because of that, the equivalent damping coefficient was a function of um. Here, it  is 

piecewise linear. So, here we do not have that as a function of um.  



So, with that I would like to conclude this lecture here.  

Thank you. 


