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Welcome to the 12th week. This week we will start with the discussion of flow mode analysis, 

but instead of using the Bingham plastic model that we did before, here we will use Herschel-

Buckley fluid model. Now as per the Herschel-Bulkley fluid model as we have seen before that 

this fluid model is non-linear. So, the post yield behavior is modeled using non-linear 

equation. So, the model looks like this. After the yield point, the shear stress versus shear 

strain graph looks like this. 

So, this is our tau y and this we can say minus tau y. So, the equation is tau equal to tau y plus 

k multiplied by gamma dot to the power n. And this is when our gamma dot is greater than 0 

which means this part of the graph, the upper part the positive part of the graph. And then 

we have tau equal to minus tau y plus k gamma dot to the power n and this is when our gamma 

dot is negative. 

𝜏 = 𝜏𝑦 + 𝑘𝛾̇𝑛 

𝜏 = −𝜏𝑦 − 𝑘|𝛾̇𝑛| 

Now here we have to be careful. So, it is better that we put a mod sign here and put a negative 

sign here. So, that makes the graph same as the graph at the negative side same as at the 



positive side. Now here this entire thing is post yield behavior and this graph here we have n 

greater than 1. So, that is why we can see that when increase in gamma dot, the slope of the 

graph is also increasing which means the viscosity is increasing with gamma dot and this is 

called shear thickening behavior. 

If I draw the graph tau versus gamma dot here with n less than 1 then the graph looks like 

this and here it is n minus 1. So, it is shear thinning behavior. So, the effective viscosity is 

reducing as the shear strain rate is increasing. Now in general, the ER or MR fluids are shear 

thinning fluid which means in most of the cases, they have n less than 1, but in our formulation 

is more generic here whether it is greater than 1 or less than 1, does not matter. The same 

formulation holds. 
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So, we will do it using the flow mode. So, in the flow mode as we have seen before, we have 

two plates. There is a upper plate and there is a lower plate and both the plates are fixed and 

in between them, the velocity varies. Now we have seen that there is a region in between 

around the midline of it there is a region where the fluid behaves like a solid in the sense that 

there is no velocity gradient in this region and that we call as plug and from here to here the 

distance we denote as y₁ and from here to here the distance we denote as y₂ and we have 

seen that this distance between these two plates we can denote that as d. This is our x axis 

and this is our y axis and we have seen that our y₁ is d minus delta by 2 and y₂ is d plus delta 

by 2. 
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The velocity varies here from y equal to 0 to y equal to y₁ and again from y equal to y₁ to y 

equal to d and in between y equal to y₁ and y equal to y₂ the velocity is constant. This is when 

the flow is in active mode. So, here we will do active mode analysis only. That means, our tau 

y is non-zero. There is non-zero yield stress because of non-zero field that is applied. So, we 

will start with the governing differential equation and the governing differential equation is 

del tau by del y is minus  del P by L and our constitutive relation we have written tau equal to 

tau y plus k del u by del y to the power n. Now, here see if you substitute the governing 

differential equation, the equation of motion becomes del by del y k del u by del y n equal to 

minus del P by L and then if we integrate the equation, so, this is obtained just by putting this 

here and then if we integrate the equation, we get a equation of the form which is del u by del 

y to the power n minus del P by L k y plus c₁. Actually if we integrate it we get minus del P by 

L plus c1 first and then we divide by k. So, c₁ also gets divided by k, but because c₁ is a 

constant, we can observe that k within c₁. So, we can write it in this form and then after that 

from here we can find out the root of it and we get del u by del y and then that gives us minus 

del P by k L y plus c₁ to the power 1 by n and then from here again after integrating we get 

minus del P by k L y plus c₁ to the power 1 by n plus 1 and this quantity also has to be divided 

by 1 by n plus 1. 

So, that gives us 1 and then we have plus c₂. So, that is our expression for y. So, u as a function 

of y is this. After that our procedure is same. So, we apply the boundary condition and the 

boundary condition is velocity is 0 here. So, u equal to 0 here we have u equal to 0 and we 

have del u by del y equal to 0. We have del u by del y equal to 0 and that gives us the velocity 

profiles. Then our next job is to find out the plug thickness that we get from the shear equation 

here. So, only thing is that because of the power n the flow profile looks different. So, we put 

the boundary condition. Before that if we call this as region 1, we call this as region 2 and we 

call this as region 3.  
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Now we put the boundary condition. So, in region 1 our boundary conditions are that at y 

equal to 0 we have u equal to 0 or we can call it u₁ equal to 0. So, u₁ means u at region 1 and 

then we have at y equal to y₁, the velocity gradient is 0. So, we can say del u by del y equal to 

0. This we also write as del u₁ by del y. In region 1, u is just u₁. So, the first boundary condition 

gives us if we put these boundary conditions or satisfy the boundary conditions then the first 

boundary condition gives us C₁ equal to delta P divided by k L multiplied by y₁ and then we 

get C₂ equal to n by n plus 1 delta P divided by k L to the power 1 by n into y₁ to the power n 

plus 1 by n. So, these are the two constants that are evaluated after applying the boundary 

condition. So, after evaluating the constants we can put them in the governing differential 

equation in the equation for u and that gives us the velocity profile. 

So, velocity profile in region 1 looks like this u₁ as a function of y becomes minus n by n plus 

1 into delta p k L to the power 1 by N multiplied by y₁ minus y n plus 1 by n minus y₁ into n 

plus 1 by n. So, that is our velocity profile in region 1. So, we can see here that if our N is equal 

to 1 then it becomes a quadratic equation of y. Here depending on the n the the degree would 

change. Next we have to go to region 3. 

So, region 3 is the uppermost region. So, if we look here now whatever we see the flow profile 

here that is symmetrically can be seen in region 3 also. So, just by using the symmetry we can 

find out the flow profile here. Now please understand the velocity gradient in region 3 is 

negative. So, just by using symmetry we can say that u₃ y is equal to u₁ d minus y. So, u₃ is the 



velocity profile in our region 3. So, this comes from symmetry of flow profile or velocity 

profile. Now if that is so, then our expression for u₃ is minus n by n plus 1 into delta P by k L 

to the power 1 by n multiplied by y minus y₂ to the power n plus 1 by n minus d minus y₂ to 

the power n plus 1 by n. So, these two profiles here this and this, they are symmetric with 

respect to the midline.  
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Now we need to go to region 2 we have already evaluated 1 and 3. Mid region is region 2 and 

that is our plug region. So, in region 2 first we find out the velocity profile and again if we go 

back to the figure, whatever the velocity here the same velocity is here and that velocity is 

same within that entire plug region. So, if we evaluate the velocity here by using the 

expression of u₁ and if we evaluate the velocity here by using the expression of u₃ we get 

these two velocities to be same and that is the constant velocity that is maintained within that 

plug region. So, we can say that u₂ as a function of y which is eventually not a function of y is 

equal to u₁ evaluated at y is equal to u₃ evaluated at y₂. So, u₁ evaluated at y₁ is equal to u₂ 

evaluated at y₂. 
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Now if we do that evaluation then the expression becomes n by n plus 1 multiplied by  del P 

by k L to the power 1 by n multiplied by d minus delta by 2 which is our y₁ to the power n 

plus 1 by n and that is the velocity at which the plug region moves. . 
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Now, we have to find out the thickness of the plug region which means delta. So, evaluation 

of delta. So, for that also you will use the same approach that we used for the Bingham Plastic 

Model. Now, our equation is del tau 2 by del y is equal to minus of  del P by L and then if we 

integrate the equation, so, tau 2 is the velocity in region 2, if we integrate the equation it gives 

us tau 2 as a function of y is equal to minus  del P by L y plus c₃ and then we know that at y 

equal to y₁, our yield stress is tau y and stress is tau y and at y equal to y₂, the stress is minus 

tau y. 

If we go back to the image once again, so, here where the region 1 moves the junction between 

region 1 ends the junction between region 1 and 2, here our tau is equal to tau y because here 

the velocity gradient mean in region 1, the velocity gradient is positive. So, here tau is equal 

to tau y. In region 3, the velocity gradient is negative. So, in between region 2 and region 3 

that means, at the upper end of the delta region or the plug region, tau is equal to minus tau 

y. If we put these two boundary conditions that can help us find out the constants and the 

thickness of the plug region. 



So, at y equal to y₁, we have tau equal to tau y and this gives us tau y, the yield stress is equal 

to minus del P by L into y₁ plus C₃ and then at y equal to y₃, we have tau equal to minus tau y 

and that gives me this equation. Minus tau y equal to minus del P by L multiplied by y₂ plus 

C₃ Now, if we add these two equations we can evaluate C₃. So, adding these two equations we 

get C₃ as delta P by L multiplied by y₁ plus y₂ divided by 2 and we know that y₁ plus y₂ is d, 

the distance between the two plates. So, that gives us delta P d by 2 L. Now, we can put this 

C₃ in one of the equations and that can help us with the evaluation of delta or we can subtract 

these two equations also then C₃ gets eliminated and delta can be evaluated because our y₁ 

and y₂ both are linear function of delta. 

So, from that we can find out delta as tau y multiplied by 2 L divided by delta P. So, we can see 

that the thickness delta is as per this model is same as the thickness delta that we got from 

the Bingham plastic model. So, same as that obtained using Bingham plastic model. Now, that 

we have got delta. So, if we know delta we know y₁ and y₂. 

So, accordingly we can write all the velocity profile and the shear profile properly. So, with 

that we can say that tau as a function of y becomes tau y plus delta P by L multiplied by y₁ 

minus y and then tau 2 y tau, in the region 2, is delta P by 2 L d minus 2 y and tau 3, as a 

function of y, is minus tau y minus delta P by L y minus y₂. So, our governing differential 

equation says that shear del tau by del y is equal to minus  del P by L and integrating that we 

get that our variation of tau along y is linear and that is what we see here. So, if you want to 

plot the shear distribution, it would look like this. So, when y is equal to 0 our tau is tau y plus  

delta P by L into y₁ which is like this and when our tau is equal to to d then if we put d we get 

the same shear, but with a negative sign. 

So, if you put y equal to d here it becomes d minus y₂ and d minus y₂ as we know is equal to 

y. So, the shear here and shear here are same, but opposite and in between them it varies 

linearly. So, at d by 2, the shear is 0. Shear stress we are talking about here and it is this. So, 

here it is tau y plus delta P by L multiplied by y₁ and this value is also tau y plus delta P by L 

y₁ here it is 0 we have some plug thickness delta and so, this amount is delta and this entire 

distance is d and if you want evaluate tau at y₁, so, it is we if we just put y equal to y₁ then this 

quantity becomes 0. So, tau 1 at y₁ is tau y and here it is minus tau y. So, this quantity is minus 

tau y. So, this is plus and this is minus. Now please understand tau y is not the location along 

y here. It is this dimension to be more specific. So, this is tau y and this quantity is tau y.  

Next our goal is to find out the effective damping and for that again we apply the same 

procedure our procedure is that we find out the total flow and then we equate that total flow 

to a flow which we would have obtained if I would have assumed an uniform flow throughout 

and by equating that we get the equivalent uniform flow and from that equivalent uniform 

flow, we can find out the damping coefficient. We can find out the total force from the 

pressure and then dividing that force by the equivalent uniform flow which we generally 

denote as Um we can find out the damping coefficient.  
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So, our total flow is here consisting of the contribution from these three regions Q₁, Q₂ and Q₃ 

and we know that the Q₁ and Q₂ are same. 
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So, it becomes 2 Q₁ and then we have Q₂. So, if I add 2 Q₁ plus Q₂ that gives me total flow.  
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So, here we do evaluation of damping coefficient. So, for that the total flow Q is Q₁ plus Q₂ plus 

Q₃ which we write as 2 Q₁ plus Q₂ from the symmetry and then we have 2Q₁ equal to b 

multiplied by some quantities in a bracket and then we have 2 multiplied by integral of u₁ 

over 0 to y₁ and we have integral of u₂ over y₁ to y₂ and then we know that we can rewrite 

the expression in a better way. So, we have 2 multiplied by integral of this quantity over 0 to 

y₁. 
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So, and here we have b and y₁ to y₂. So, integral of this quantity and finally, after doing all the 

integrations the flow rate Q becomes b n multiplied by delta P by k L to the power 1 by n 

multiplied by d minus delta to the power n plus 1 by n multiplied by n into d plus delta Plus 

d divided by 2 n plus 1 by n plus 1. So, this is our total flow rate Q. After that from here we 

will find out the equivalent constant velocity and from there we will find out the damping 

coefficient and then we will find out the ratio of the damping coefficient in the active mode 

and in the inactive mode.  

So, we will do that in the next class we will end this lecture here.  

Thank you. 


