
Smart Structures 

Professor Mohammed Rabius Sunny 

Department of Aerospace Engineering 

Indian Institute of Technology, Kharagpur 

Week 11 

Lecture No: 56 

Analysis of Electro and Magneto Rheological Fluid Flow (continued) 

Part 03 

 

So, today we will continue our discussion on flow mode analysis of electro and 

magnetorheological fluids.  

In the last lecture, we did the analysis considering the fact that there is no applied electric 

or magnetic field. And today, we will discuss about what happens when there is a magnetic 

field or electric field applied like what is shown here. And in the last class towards the end, 

we saw that because the shear stress is close to 0 near the mid zone. So, there is always a 

region here, where I have no strain rate, shear strain rate. So, this part, the thickness of 

which is delta that behaves like a solid. So, it just moves as it is without any shear strain 

rate. Now, the other two part, the above this region of delta thickness that part has shear 

strain rate and the below part also has a shear strain rate. So, we divide this entire zone into 

three parts maybe - zone 1, zone 2 and zone 3. Now, because of the symmetric nature of 

the problem, this zone 2 is placed symmetrically. So, based on the dimensions, we can say 

that the thickness of zone 1 is d minus delta by 2 and thickness of zone 3 is also d minus 

delta by 2. And that tells me that the value of y1 is d minus delta by 2 and accordingly I can 

find the value of y2 difference i.e., between this point and this point and that is d plus delta 

by 2.  

𝑦1 =
𝑑 − 𝛿

2
             𝑦2 =

𝑑 + 𝛿

2
 

So, we have discussed the boundary conditions also. At these two plates, we have no slip 

boundary condition and at the two ends of this mid-region, we have strain rate as 0.  Now, 

based on this boundary conditions, we can analyze the flow. Now, we have three regions 

and we have to look at the behavior separately.  

So, let us look into region 1. In region 1, again our governing differential equation is - mu 

del 2 u by del y 2 is equal to minus of del p by L. 

𝜇
𝜕2𝑢

𝜕𝑦2
= −

Δ𝑝

𝐿
 

And then if we integrate that, if we integrate that, that gives me u1 of y. If we just integrate 

twice, that gives us two constants and finally, it comes as C2.  



𝑢1(𝑦) = −
Δ𝑝

2𝜇𝐿
𝑦2 + 𝐶1𝑦 + 𝐶2 

So, there are two constants and these two constants. And these two constants can be 

evaluated by putting the condition that at y equal to 0, u is 0, and at y equal to 1, del u by 

del y is 0. So, at y equal to 0 we have u1 equal to 0, and that tells me that C2 is equal to 0. 

And then at y equal to y1, we have del u1 by del y which is evaluated at y equal to y1 is 

equal to 0. That tells me that C1 equal to delta p, y1 by mu L.  

𝑎𝑡 𝑦 = 0, 𝑢1(0) = 0               ⇒ 𝐶2 = 0 

𝑎𝑡 𝑦 = 𝑦1,
𝜕𝑢1

𝜕𝑦
|

𝑦=𝑦1

= 0             ⇒ 𝐶1 =
Δ𝑝𝑦1

𝜇𝐿
 

So, just to show it, we have del u by del y equal to minus delta p, L y by mu plus C1. So, 

in this expression, when I put y equal to y1 and the left-hand side as 0, C1 comes out.  

𝜕𝑢

𝜕𝑦
= −

Δ𝑝

𝜇𝐿
𝑦 + 𝐶1 

(Refer Slide Time: 5:13) 

 

So, that shows me a profile of the velocity along the thickness in region 1. 

So, we can write that as u1 as a function of y becomes minus del p by 2 mu L, y square plus 

del p y1 by mu L, y. And then, the same thing can be represented as - del p by 2 mu L 

multiplied by y into d minus delta minus y. Because we know, y1 in terms of d and delta or 



this is also del p by 2 mu L multiplied by y into 2 y1 minus y. So, y1 is d minus delta by 2. 

So, it is 2y. 

𝑢1(𝑦) = −
Δ𝑝

2𝜇𝐿
𝑦2 +

Δ𝑝𝑦1

𝜇𝐿
𝑦 

          =
Δ𝑝

2𝜇𝐿
𝑦(𝑑 − 𝛿 − 𝑦) 

      =
Δ𝑝

2𝜇𝐿
𝑦(2𝑦1 − 𝑦) 

Then, now let us go to region 3. In region 3, we can just say that the flow profile would 

look symmetric, but still, we can derive that. So, in region 3, if we denote the velocity as 

u3. So, u3, y becomes minus del p by 2 mu L, y square plus C3 y plus C4 or we can say del 

u3 by del y, we are not evaluating at anywhere, we are just writing the expression. So, del 

u3 by del y is equal to minus delta p by mu L y plus C3. 

𝑢3(𝑦) = −
Δ𝑝

2𝜇𝐿
𝑦2 + 𝐶3𝑦 + 𝐶4 

𝜕𝑢3

𝜕𝑦
= −

Δ𝑝

𝜇𝐿
𝑦 + 𝐶3 

Now again, we would do the same set of exercises to find out C3 and C4. So, here we apply 

the condition that strain rate del u3 by del y evaluated at y equal to y2 is 0 and that tells me 

that C3 is equal to del p y2 by mu L. And then we can put the other boundary condition 

which is u3 which is evaluated at d and that is - if we do it, we get the expression like this 

minus del p by 2 mu L into d square plus del p by mu L into d y2 plus C4 equal to 0 and 

that helps me finding out C4 as del p by 2 mu L d into d minus 2 by 2.  

𝜕𝑢3

𝜕𝑦
|

𝑦=𝑦2

= 0                                      ⇒ 𝐶3 =
Δ𝑝𝑦2

𝜇𝐿
 

𝑢3(𝑑) = −
Δ𝑝

2𝜇𝐿
𝑑2 +

Δ𝑝

𝜇𝐿
𝑑𝑦2 + 𝐶4 = 0            ⇒ 𝐶4 =

Δ𝑝

2𝜇𝐿
𝑑(𝑑 − 2𝑦2) 

So, if we plot the velocity profile, we would see that the value is 0 here and it goes up and 

get some value and again the value is 0 here and if y reduces it gets the same value at y 

equal to y2. Now, we have to just ensure that if we evaluate u1 at y equal to y1, we get the 

same velocity when we evaluate u3 at y equal to y2. 

So, before doing that let us write down the final expression for u3 after applying all the 

constants and the expression becomes minus del p by 2 mu L y square plus del p by mu L 



y y2 plus del p by 2 mu L d square minus 2 d y2 and on simplifying, the expression comes 

as del p by 2 mu L multiplied by d minus y multiplied by y minus delta.  

𝑢3(𝑦) = −
Δ𝑝

2𝜇𝐿
𝑦2 +

Δ𝑝

𝜇𝐿
𝑦𝑦2 +

Δ𝑝

2𝜇𝐿
(𝑑2 − 2𝑑𝑦) 

         =
Δ𝑝

2𝜇𝐿
(𝑑 − 𝑦)(𝑦 − 𝛿) 
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Now, let us evaluate those velocities at y equal to y1 considering u1, and at y equal to y3 

considering u2. So, that would give me the velocity at which the region 2 travels. So, region 

2, see if I evaluate u1 at y1, that comes as delta p by 2 mu L multiplied by y square and this 

again can be written as delta p by 8 mu L multiplied by d minus delta square.  

𝑢1(𝑦1) =
Δ𝑝

2𝜇𝐿
𝑦1

2 =
Δ𝑝

8𝜇𝐿
(𝑑 − 𝛿)2 

Similarly, u3 at y2, if we evaluate that comes as delta p by 2 mu L multiplied by d minus 

y2, multiplied by y2 minus delta, and that is delta p by 8 mu L multiplied by d minus delta 

square. 

𝑢3(𝑦2) =
Δ𝑝

2𝜇𝐿
(𝑑 − 𝑦2)(𝑦2 − 𝛿) =

Δ𝑝

8𝜇𝐿
(𝑑 − 𝛿)2 

So, that shows us that u1 at y1 is equal to u3 at y3 is equal to some velocity we call it up.  



𝑢1(𝑦1) = 𝑢3(𝑦2) = 𝑢𝑝 

So, now, if we plot the velocity profile and this is our region with thickness delta. So, the 

velocity is 0 and 0 here and the velocity increases and gets a value up. And here also the 

velocity increases and the value are up and this up is maintained in the region, in the mid 

region, in region 2. So, region 1, region 2, region 3.  

Now, this constant velocity up, u1 u3 equal to 0. Now, this constant velocity up is the 

velocity at which the mid region travels and that is called a plug region. So, this region as 

we said there is no velocity gradient. So, that travels as a solid with one velocity. So, that 

is called the plug region. So, we can call it region 2 is known as plug region. Now, that we 

know the velocity of the plug region, we have to find out the thickness delta of this region. 

Now, to do that, first we solve the governing differential once again in terms of shear stress 

and that helps us doing that.  

Now, we know that we have del tau2 by del y is equal to minus del p by L, that is the 

differential equation that in terms of the shear and del 2 is the shear stress in region 2. So, 

if we solve the equation that gives me tau2 as a function of y is minus del p by L into y plus 

C5. 

𝜕𝜏2

𝜕𝑦
= −

Δ𝑝

𝐿
         ⇒ 𝜏2(𝑦) = −

Δ𝑝

𝐿
𝑦 + 𝐶5 

Now, we have to evaluate C5 first. So, for that again we apply the boundary conditions. If 

we have evaluated this del 2 at y equal to y1, it should be equal to the yield stress, because 

immediately below this y equal to y1. The stress is more than the yield stress. So, at here, 

the stress is yielding stress, equal to yield stress and here the stress is equal to the negative 

of the yield stress because here we can see that the velocity gradient is positive, here the 

velocity gradient is negative. 

So, here in this region tau2, we can say tau2 y2 equal to minus of tauy and here we can say 

tau2 y1 equal to tauy.  

𝜏2(𝑦1) = −𝜏𝑦             and        𝜏2(𝑦1) = 𝜏𝑦 

So, we have to put these two boundary conditions. If we do that, we can write that at y 

equal to y1, we have tau2 equal to minus delta p by L into y1 plus C5 and we also have at y 

equal to y2, all right. So, it is not this value is, now tauy, the yield stress. So, it is tauy, and 

here we have minus of tauy is equal to minus of delta p by L into y2 plus C5. 

at 𝑦 = 𝑦1                 𝜏𝑦 = −
Δ𝑝

𝐿
𝑦1 + 𝐶5 



   𝑦 = 𝑦2                − 𝜏𝑦 = −
Δ𝑝

𝐿
𝑦2 + 𝐶5 

So, if we add these two equations, then this gives me C5 as delta p by 2 L multiplied by y1 

plus y2.  

𝐶5 =
Δ𝑝

2𝐿
(𝑦1 + 𝑦2) 

If we just add these two equations, then tauy cancel each other and we have two C5 here, 

and finally, solving that we get this. And again, that tells me that if we put that same value 

then tau2 y. So, if we put that same value of C5 here, then we get tau2 y is equal to minus 

del p by L into y, plus we get - so, we get tau2 of y is equal to minus del p by L into y plus 

del p by 2 L multiplied by y1 plus y2 and we know that y1 plus y2 is d, because our y1 is d 

minus delta by 2 and y2 is d plus delta by 2 if we add them, we get d. So, we have d. So, 

again this expression can be written as del p by 2 L into d minus 2 y.  

𝜏2(𝑦) = −
Δ𝑝

𝐿
𝑦 +

Δ𝑝

2𝐿
𝑑 =

Δ𝑝

2𝐿
(𝑑 − 2𝑦) 

So, that is the expression of shear strain in the region, no, shear stress in the region, in the 

plug region.  

(Refer Slide Time: 17:48) 

 



Next, we have to find out delta. So, for that what we can do is - we can put the value of this 

tau2 y at any of y maybe y1 or y3 at any of the boundaries and from there we can find the 

value of either y1 or y2. If we know y1 or y2 we can find out delta. 

So, let us write at y equal to y1. We can write, minus del p by L plus del p multiplied by d 

by 2 L equal to tauy and from here. So, here it is evaluating y equal to y1. So, y1 should be 

there. And finally, after simplifying, we know that this quantity y1 is d minus delta by 2. 

So, finally, after solving we can find out delta, the plug thickness and that comes as tauy 

multiplied by 2 L divided by delta p. 

at 𝑦 = 𝑦1          −
Δ𝑝

𝐿
𝑦1 +

Δ𝑝

2𝐿
𝑑 = 𝜏𝑦    

⇒ 𝛿 = 𝜏𝑦

2𝐿

Δ𝑝
 

Then we can define a non-dimensional quantity del by d. So, the plug thickness divided by 

the total thickness of the region and that comes as - tauy multiplied by 2 L divided by delta 

p d. Let us call that delta bar. So, that is a non-dimensional quantity.  

𝛿̅ =
𝛿

𝑑
=

𝜏𝑦2𝐿

Δ𝑝𝑑
 

Now, from here, we can see that when this non-dimensional quantity is 1, that means, the 

entire region, there is no flow, that means, the entire region is in the pre-yield region. In 

other words, we can say that, if tauy is greater than delta p d by 2 L, when tauy is greater 

than delta p by 2 L. So, that denotes that delta is 1, which means that in that yield stress 

there is no flow possible, that means, if have given the pressure difference and then if I 

want to close the flow by the valve action, then I have to put an electric or magnetic field 

in such a way that we at least get this amount of tauy and that that blocks the entire flow.  

𝐼𝑓 𝜏𝑦 ≥
Δ𝑝𝑑

2𝐿
            ⇒ 𝛿̅ = 1 

Now, we have to find out the equivalent damping and for finding out the equivalent 

damping, we would proceed with the same. And for finding out the equivalent damping, 

we proceed with the same approach. So, we will assume that there is an equivalent velocity 

um may be and we will find out the flow corresponding to that in terms of un, and then we 

will find out the actual flow, and then we equate both the terms and that would give me um. 

Now, if we draw it once again, we have these two plates x y z and this is our d. We say that 

the dimension in the z direction is b. So, if the equivalent velocity is um, then flow rate is 

equal to um multiplied by b multiplied by d.  



flow rate = 𝑢𝑚𝑏𝑑 

We have to now equate that with the actual flow. So, the flow actual is Q, which is equal 

to 2 Q1 plus Q2. 

𝑄 = 2𝑄1 + 𝑄2 

Again, there are three regions region 1, region 2, region 3. So, the flow in region 1 is Q1, 

flow in region 1 is Q3 and if I add those two up, I get the summation as 2 Q1, because Q1 

and Q3 are same because these two regions are symmetric.  

2𝑄1 = 𝑄1 + 𝑄3 

So, Q1 and Q3 are same. So, these two regions give me a flow of 2 Q1, and Q2 is different 

that gives me a flow of Q2 and their total is the total actual flow. So, to find this out, we 

integrate of integration from 0 to y1 and then we multiply here y1 of y and then we multiply 

that quantity by b and then we integrate from 0 to y1. And then, for Q2, I just need um, sorry, 

not um that is the up, the plug flow here, plug velocity up multiplied by the cross-section 

dimension that is delta multiplied by b. 

𝑄 = 2 ∫ 𝑢1(𝑦)𝑏𝑑𝑦 + 𝑢𝑝𝛿𝑏

𝑦1

0

 

So, if we evaluate this quantity, finally the quantity becomes delta p b by 12 mu L 

multiplied by d minus delta cube plus we have delta p b by 8 mu L multiplied by d minus 

delta square delta. So, that is the total flow Q. And this should be equated with mu m b d 

and then once we do that we get, sorry, it is not mu m, it is um.  

𝑄 =
Δ𝑝

12𝜇𝐿
(𝑑 − 𝛿)3 +

Δ𝑝𝑏

8𝜇𝐿
(𝑑 − 𝛿)2𝛿 = 𝑢𝑚𝑏𝑑 

So, once we do that, we get um as delta p d square 12 mu L multiplied by 1 minus delta bar 

square, delta bar is this quantity the non-dimensionalized plug thickness multiplied by 1 

plus delta bar by 2.  

𝑢𝑚 =
Δ𝑝𝑑2

12𝜇𝐿
(1 − 𝛿̅)

2
(1 +

𝛿̅

2
) 

So, that is the equivalent flow throughout the passage.  

(Refer Slide Time: 25:32) 



 

Now, that we have got the equivalent flow we can find out the damping coefficient. So, the 

total force is delta p b d, pressure multiplied by the area and here we are using the suffix a 

to denote that it is in active mode.  

𝐹𝑎 = Δ𝑝𝑏𝑑 

So, it is under electrical mechanical field and then if we divide this, Fa by the equivalent 

velocity um, that gives me the corresponding damping. So, by doing that the final 

expression of C equivalent comes as 12 mu L b d divided by d square multiplied by 1 minus 

delta bar multiplied by 1 plus delta bar by 2.   

𝐶𝑒𝑞
𝑎 =

𝐹𝑎

𝑢𝑚
=

12𝜇𝐿𝑏𝑑

𝑑2(1 − 𝛿̅)
2

(1 +
𝛿̅

2
)

 

Now, we know that C equivalent for the inactive case that means, when we did not have 

the electric field applied, was C equivalent 0 equal to 12 mu L b by d.  

𝐶𝑒𝑞
0 =

12𝜇𝐿𝑏

𝑑
 

So, this is the damping coefficient under no field, and this is damping coefficient under 

field, which we can call as active mode. So, here we can see that when we have this delta 

bar equal to 1, that means, our yield stress is sufficiently high to block the flow. In that 

case, our active damping coefficient is going towards an infinite value. So, with those we 

can represent Ceq active in terms of Ceq 0 and the expression is C equivalent 0 divided by 

1 minus delta bar whole square multiplied by 1 plus delta bar by 2.   



𝐶𝑒𝑞
𝑎 =

𝐶𝑒𝑞
0

(1 − 𝛿̅)
2

(1 +
𝛿̅

2
)

 

Now, let us define a number called Bingham number, and the Bingham number is defined 

as Bi, which is equal to tauy multiplied by d divided by mu um. So, tauy is the yield stress 

and we can see that this quantity mu um by d that is also the dimension of stress and that is 

viscous stress. So, it is basically a ratio of yield stress and viscous stress and that quantity 

finally, comes to be tauy d by mu 12 mu L divided by delta p d square multiplied by 1 

minus delta bar whole square multiplied by 1 plus delta bar divided by 2. And that can be 

written as 6 into delta bar divided by 1 minus delta bar whole square multiplied by 1 plus 

delta bar by 2.  

𝐵𝑖 =
𝜏𝑦𝑑

𝜇𝑢𝑚
=

𝜏𝑦𝑑

𝜇

12𝜇𝐿

Δ𝑝𝑑2(1 − 𝛿̅)
2

(1 +
𝛿̅

2
)

 

And the ratio of the active damping coefficient divided by the damping coefficient under 

no field can also be written in terms of Bingham number as Bi divided by 6 delta bar.  

𝐶𝑒𝑞
𝑎

𝐶𝑒𝑞
0 =

𝐵𝑖

6𝛿̅
 

(Refer Slide Time: 30:29) 

 

So, this was about the flow in the valve mode or flow mode. So, we have seen three 

different regions. We have to treat them separately and they have some conditions in 



between them which we have to satisfy. And finally, after satisfying the condition we get 

the velocity profile. And then, after getting the velocity profile we apply the same approach. 

We find out a equivalent velocity. And from here, we found out equivalent damping. And 

then we see how the equivalent damping coefficient changes when there is some electric 

field applied as compared to when there is no electric field. 

So, with that I would like to conclude this lecture here.  

Thank you. 


