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So, in the last lecture, we derived the final element formulation for the beam that has 

externally applied load, which is dampened out by shape memory alloy wires.  

Now today, we will see, how the forces FH bar FV bar and M can be calculated. Based on 

the displacement that are experienced at node number 2N plus 1, sorry, node number N 

plus 1. So, to do that let us look into the diagram.   

So, here this portion shows only the part of the beam which is from x equal to 0 to La. Now, 

due to the bending of the beam, this point moves here. Now, we have to find out the final 

length which is small l plus delta l. So, small l is the initial length of the shape memory 

alloy wire, and l plus delta l is the final length after the deformation. So, we have to find 

out this final length small l plus delta l. 

So, the slope here is – this slope is del w by del x, because if we consider the Euler-

Bernoulli assumption, then the plane section remains plane before and after bending. So, 

this slope is also del w by del x. Now, if this slope is del w by del x, then this offset is del 

w by del x,  which is w prime multiplied by tb by 2. So, in this diagram w prime is equal to 

w comma x equal to del w by del x. Then, if we know this quantity then finally, after 

applying trigonometry, it can be shown that our l plus delta l whole square is equal to h 

minus d2N plus 1 whole square, plus La minus tb by 2, d2N plus 2 whole square. 

(𝑙 + Δ𝑙)2 = (ℎ − 𝑑2𝑁+1)2 + (𝐿𝑎 −
𝑡𝑏

2
𝑑2𝑁+1)

2

 

Here, h is this vertical dimension, and as we know that d2N plus 1 as per our degree of freedom 

nomenclature is equal to w at x equal to La. And d2N plus 2 is equal to del w by del x at x 

equal to La. And also we know that l square, the undeformed length is h square plus La 

square.  

𝑙2 = ℎ2 + 𝐿𝑎
2  

Then subtracting, we can get 2 small l, del L equal to  minus 2 h d2N plus 1 minus La, tb d2N 

plus 2.  

2𝑙Δ𝑙 = −2ℎ𝑑2𝑁+1 − 𝐿𝑎𝑡𝑏𝑑2𝑁+2  



And then, it becomes del l equal to minus sin theta d2N plus 1, minus cosine theta into tb by 

2, d2N plus 2.  

Δ𝑙 = − sin 𝜃 𝑑2𝑁+1 − cos 𝜃
𝑡𝑏

2
𝑑2𝑁+2 

So, strain in wire 1 increases by an amount epsilon1c which is equal to del l by l, and that 

is equal to minus sin theta d2N plus 1 divided by small l, minus cosine theta tb by 2l, multiplied 

by d2N plus 2. 

𝜀1𝑐 =
Δ𝑙

𝑙
= −

sin 𝜃 𝑑2𝑁+1

𝑙
−

cos 𝜃 𝑡𝑏

2𝑙
𝑑2𝑁+2 

Now, we have wire 2 below it. So, the upper wire, we denote it as wire 1. And then below 

also we have a wire, and the wire below is wire 2. So, the wire that is positioned here, we 

call it wire 2. The upper one is wire 1, and the wire below is wire 2. So, because they are 

symmetrically placed the amount of strain would be same here, but opposite because if this 

is experiencing a negative quantity as a strain this would experience a positive quantity as 

a strain it will try to increase in length. So, strain in wire 2 increases by epsilon2c which is 

equal to minus of epsilon1c. 

𝜀2𝑐 = −𝜀1𝑐 

Now let us define a quantity epsilon1c is equal to epsilon2c is equal to epsilonc.  

(Refer Slide Time: 6:40) 

 



Now, we can say that: strain in wire 1 is epsilon1 equal to epsilonp plus epsilon1c, where 

epsilonp is the amount of pre strain in the wire. So, when the beam is undeformed the 

amount of prestrain in the wire is epsilonp. So, epsilonp is prestrain in the wires and they 

should be same because they are symmetrically placed, when the beam is undeformed. And 

strain in wire 2 is epsilon2 equal to epsilonp minus epsilonc. We have already defined a 

quantity epsilonc. So, let us not use the suffix 1 or 2, say epsilonp plus epsilonc and epsilonp 

minus epsilonc. 

𝜀1 = 𝜀𝑝 + 𝜀𝑐 

𝜀2 = 𝜀𝑝 − 𝜀𝑐 

Now, if I know the strains, we can find out the stress by using the constitutive relation of 

the piezoelectric materials that we discussed. So, stress in wire 1 can be found from the 

equation, sigma1 minus sigma10 is equal to E xi1 multiplied by epsilon1 minus epsilon1,0 

plus omega xi1 multiplied by xi1  minus xi1,0. And there could also be a term capital theta 

multiplied by the  temperature difference. However, in this entire process the temperature 

is remaining fixed. So, that quantity does not have any contribution and anyway even if 

there is some temperature difference, we have seen that the contribution due to that capital 

theta term is generally negligible. So, we do not have that term.  

𝜎1 − 𝜎1,0 = 𝐸(𝜉1)(𝜀1 − 𝜀1,0) + Ω(𝜉1)(𝜉1 − 𝜉1,0) 

So, here xi1 is the martensite volume fraction in wire 1 and epsilon1,0 is the initial. So, it is 

not epsilon1,0. It is epsilon1,0 maybe we can put a comma here. 0 means the initial 

configuration. Epsilon1 means the stress in wire 1. 0 means initially how much it was. So, 

there is a change in the stress in wire 1. Similarly, here also it is, sorry, it is sigma 1 minus 

sigma1,0 that is the change in the stress in. 

So, here we have this term sigma 1 minus sigma 1 comma 0. So, it is not sigma 10, it is 

sigma 1 comma 0 and that signifies the change in the stress in wire 1. Similarly, I have  

epsilon1 minus epsilon1 comma 0 and that signifies change in the strain in wire 1. So, it is 

change in the stress in wire 1, this is the change in the strain in wire 1. And similarly, this 

is the change in the martensite volume fraction in wire 1, and they are related to this 

constitutive  relation. Again, we know that this equation is a highly non-linear equation   

because this xi1 is a non-linear function of sigma. So, xi1 is non-linear function of sigma1 

and it we can use it Tanaka model or Liang and Rogers model or Brinson model, whatever 

model we use, this is a non-linear function of sigma1. And we have seen how to solve this 

equation using an iterative techniques like Newton Raphson technique that we discussed 

in the last lecture of the previous week. 

So, accordingly we have to find this out based on some initial and final strain. So, if I know 

the initial strain, if I know the final strain, we can find this quantity, find the stress out by 



solving the non-linear equation. So, that makes the entire solution of the finite element 

equation highly iterative. So, now, let us discuss how we can solve it. 
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So, here is the flow chart of the iteration procedure. So, at first we guess epsilonc because 

– Let us suppose that we are solving a static problem. So, for a given load, for a given static 

load, first we find out what is the amount of displacement? What is the deformation in the 

beam? So, for that condition, we do not know the epsilonc. So, we guess – that is what we 

have to find out. 

So, let us guess epsilonc. Guess some value and based on the guess, we find out sigma1. 

Find out sigma1, sigma2. So, in this case our epsilonp becomes the initial strain, sigma1,0 

and the final strain is epsilon1 which is equal to epsilonp plus epsilonc for the wire 1, and 

the for the wire 2, it is epsilon2 equal to epsilonp minus epsilonc. And for both the wires our 

initial strain is epsilonp. So, based on that, we find out our stresses  and again this itself is 

a iterative procedure. So, to evaluate this block, itself we need to do the Newton Raphson 

based iteration and find out sigma1 and sigma2. Once we get our sigma1 and sigma2, we 

can find out the amount of forces in the wire, we can find out the amount of tensions in the 

wire. 

So, sigma1 is that a stress in wire 1 and sigma2 is the stress in wire 2. If I multiply those by 

the area of cross section of the wire, we get our  tension T1 and T2. So, find T1 equal to 

sigma1 Aand T2 equal to sigma2 A, where A is the cross sectional area of SMA wires. If I 

get my T1, T2, I can find out the quantities FH bar, FV bar and M bar. Once I know those 

quantities, now my force matrix, force vector in the final element formulation is defined. 



Now, for that known force vector I can find out d. So, now please understand here we are 

solving a static problem, we are assuming that the applied force is time independent. So, 

in this case we would just solve this equation K, d equal to F. Then once we have found 

out d, we know what our d2N plus 1 and what our d2N plus 2 and what is our d2M plus 1. And then 

based on that we find out again epsilonc. Now, the question is whether this epsilonc or the   

previously got epsilonc is agreeing or not. If they are not converged, we have to repeat the 

procedure. If they have converged, we can stop the procedure.   

So, now, epsilonc converged, if the answer is yes, then we can exit. And if the answer is 

no, again we go back and feed that newly obtained value of epsilonc and repeat the 

procedure until and unless the improvement of epsilonc stops. So, until and unless  the 

convergence of epsilonc is obtained. Once the convergence of epsilonc is obtained, the 

corresponding d is our obtained value of the nodal degrees of freedom at different node 

points and that gives us the solution.  

So, it is a solution of the static problem. So, static solution. So, applied load P does not 

change with time. 
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Now, what if we want to do the dynamic solution and that is the goal of this work, because 

we have added a damping and our force P is a time dependent force and the vibration 

caused due to that has to be dampened out. So, here let us go to the dynamic solution. P is 

time dependent. Now, for dynamic solution, we already discussed the various algorithms 

to do the time merging. One of them was the beta Newmark method. We did this discussion 

in week 5. So, here in the beta Newmark scheme. It goes like this. At every time step n 



plus 1, we know the quantities at the  previous time step. So, at the n plus 1th time step, we 

know d double dot, at the time step n, we know d dot at time step n and we know d at time 

step n. So, based on those known quantities, we find out our d double dot at n plus 1, 

because in this expression all the quantities like d double dot and d are from the previous 

time step. So, we can find this out. After you find out d double dot at n plus 1, we can find 

out our dn plus 1. After you find out dn plus 1 and d double dot at n plus 1 we can find out d dot 

at n plus 1 and the and the time merging proceeds. Then we go to the n plus 2th time step 

and at that time step n plus 1 quantities are n plus 1 are known to me. So, I can do the same 

thing.  However, here because this problem is highly non-linear, evaluation of this d double 

dot at n plus 1 involve the iteration. Because here, I have the force matrix here. 

Now, to do this again we do the same procedure. So, whatever iteration we defined here, 

that entire iteration has to be done to solve this equation. So, for solution of this equation, 

this iteration has to be repeated. So, within each time step, we have to find out d double dot  

at n plus 1 by this kind of iteration. And after that we can find out d dot at d and dn plus 1. 

So, here if I want to find out this by iteration, again I make a guess of epsilon and based on 

guess of epsilon that we make, we can find out d dot at n plus 1, and that will give us d at 

n plus 1. And once we get that and we can find out d dot also. And then once we get that d 

at n plus 1, we can find out the new epsilon and again the procedure is repeated till my 

epsilon converges.  
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So, within each time step, the evaluation of these quantities they involved the iteration that 

was discussed in the previous slide and it continues. So, that is what that is  what about the 

iterative solution of the finite element equation that we get.   



Now, if you want to solve the same problem using the Ritz method, we can do it in this 

way. Again, we can write the variational form. So, let us write it down. We have the last 

quantity. Here the virtual work is at the point Lb, because that is where we are applying the 

externally applied load.  

∫ 𝜌𝐴�̈�𝛿𝑤𝑑𝑥

𝐿

0

+ ∫ 𝐸𝐼𝑤,𝑥𝑥𝛿𝑤,𝑥𝑥𝑑𝑥

𝐿

0

− ∫ �̅�𝐻

𝐿𝑎

0

𝑤,𝑥𝛿(𝑤,𝑥)𝑑𝑥 − �̅�𝑣𝛿𝑤|𝑥=𝐿𝑎
− �̅� 𝛿 (

𝜕𝑤

𝜕𝑥
)|

𝑥=𝐿𝑎

− 𝑃𝑤|𝑥=𝐿𝑏
= 0 

Now, here instead of having a localized basis functions, what we assume is w as a function 

of x and t is phi x multiplied by, phij x multiplied by qj t, where phij is a known function of 

x and qj is unknown function of time.  

𝑤(𝑥, 𝑡) = ∑ 𝜙𝑗(𝑥)𝑞𝑗(𝑡)

𝑁

𝑗=1

 

So again, we follow the same procedure that we discussed for Ritz method, we put 

everything in the virtual work equation and then finally, we get the quantities as finally, 

we get the a set of ordinary coupled differential equations which looks like this.  

[𝑀]{�̈�} + [𝐾]{𝑞} = {𝐹} 

And then, we have Mij is equal to 0 to L, phi, I should have the rho A also, rho A phii phij 

dx. And then, we have kj is equal to  E I phii comma x x phij comma xx dx minus we have 

FH bar, 0 to La. So, this quantity 0 to La, not L. Phii comma x phij comma x dx.  

𝑀𝑖𝑗 = ∫ 𝜌𝐴𝜙𝑖𝜙𝑗𝑑𝑥

𝐿

0

      

𝐾𝑖𝑗 = ∫ 𝐸𝐼𝜙𝑖,𝑥𝑥𝜙𝑗,𝑥𝑥𝑑𝑥

𝐿

0

− �̅�𝐻 ∫ 𝜙𝑖,𝑥𝜙𝑗,𝑥𝑑𝑥

𝐿

0

 

And then we have the force as FV bar multiplied by phii evaluated at x equal to L plus M 

bar multiplied by phii comma x evaluated at x equal to L, La, plus p multiplied by phii 

evaluated at x equal to La. 

𝐹𝑖 = �̅�𝑉𝜙𝑖|𝑥=𝐿𝑎
+ �̅�𝜙𝑖,𝑥|

𝑥=𝐿𝑎
+ 𝜌𝜙𝑖|𝑥=𝐿𝑎

 

So, this is the set of ordinary differential equations that we get when we use the Ritz 

method. In the finite element problem our force matrix was mostly 0  except for few places 

here the force matrix is populated fully. And then the solution remains same. We have to 



iteratively find out q. So, there we are finding out d, here we will be finding out q. And the 

iteration has to be in such a way that epsilonc converges.  
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Now, if we want to simplify it, let us assume that we have a one term approximation for w 

and the approximation is x by L cube multiplied by q1.  

𝑤(𝑥) = (
𝑤

𝑙
)

3

𝑞1 

So, that gives the equation as L by 7, q1 double dot, plus 12 multiplied by EI, 12EI by L 

cube, minus 9 FH bar, 5L multiplied by q1 minus FV bar, La by L. So, it is L suffix a, minus 

3M bar La square by L cube, plus P into Lb equal to 0.  

𝐿

7
�̈�1 + (

12𝐸𝐼

𝐿3
−

4�̅�𝐻

5𝐿
) 𝑞1 − �̅�𝑉

𝐿𝑎

𝐿
−

3�̅�𝐿𝑎
2

𝐿3
+ 𝑃𝐿𝑏 = 0 

So, here I have the force terms directly written in terms of FV bar and M bar. So, here I 

have just one equation and this equation now has to be solved again iteratively. So, we 

discussed. We have to do the time marching and within each time step. We have to 

iteratively find out this q's so that epsilonc converges. So, that is how this problem can be 

solved.   

Now, shape memory alloys are used as actuators also in that case we have to give thermal 

actuation. So, for the same configuration, if it has to be used in actuation mode. So, 

application as actuator for the same problem, if we want to use the same configuration, I 



mean, the shape memory alloys put in the same configuration as  actuators. In that case, let 

us assume that both the wires is in the martensite phase. So, martensite phase with some 

permanent deformation.  

Now when due to the application of this force P, this beam wants to go up. In that case, 

what we can do is – because the upward moment of P, upward moment of the beam would 

try to extend this wire. Now, if I give a heat actuation here, then the heat actuation would 

try to take the wire to its previous shape which has a length less than the length that is here. 

So, that would generate an actuation force to the beam in the  bottom direction and would 

try to prevent the upward moment. Similarly, when the beam tries to go downward, we can 

excite this actuator thermally and that would try to bring this shape memory alloy wire to 

the austenite phase. So, it would try to reduce the length of it and then the beam would 

experience an upward force. So, that is how it can be controlled by thermal  actuation.  

Now here, apart from the thermal apart from the temperature, the stress also comes into 

picture, because when the beam is going up or down the stress in the wires also changes. 

So, the same nonlinearity still remains which needs to be solved, but temperature also 

comes into picture because of the actuation. And the entire system can be designed in such 

a way that, it has to sense by a sensor, it has to sense whether the displacement is up, how 

the displacement is, how the velocity is, and accordingly, one of the actuators have to be 

excited to control the displacement. 
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So, for this, this paper can be referred to see an application like this. There are various 

papers which talks about applications of shape memory materials for vibration control or 



shape control. However, in this paper it is one of the earliest papers in this area here the 

actuation equation is much more simplified. So, this can be a good paper to start with to 

read it read those things.  

In this paper the system is little different from  the paper that we saw before. Here, we have 

a beam in this paper and there are two parallel shape memory alloy rods and they are 

connected to the beam. And this entire beam is vibrating under the action of some load and 

there are some sensors which sense the displacement and velocity of the beam. 

Now, the formulation given in this paper includes the bending stiffness of the shape 

memory alloy rods at the top and bottom also. And by giving thermal excitation to one of 

the shape memory alloy rods, based on what the sensors senses the vibration is controlled. 

The formulation can be seen in the paper.  
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So, with that I would like to conclude this lecture here.  

Thank you. 


