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In this lecture, we will discuss modeling of a beam, which has shape-memory alloy wire 

attached to it for damping application.  

So, for that the problem that we discuss is taken from this paper by Gandhi and Chapuis, 

passive damping augmentation of a vibrating beam, using pseudoelastic shape memory 

alloy wires. Now, in this paper, the material modeling that is used is based on complex 

elastic modulus. So, that is a different model. However, in our discussion, we will use the 

constitutive relations of shape-memory alloy that we discussed in the last week. And also, 

many of our notations would be different from the paper. 

Now, the structure that is considered here is a beam and it looks like this. So, we have a 

beam structure. It is a cantilever beam and the beam. So, the cantilever beam has an 

externally applied load P and this load P can be time dependent. 

And let us assume that, the load P is applied at a distance Lb from the root of the beam and 

entire length of the beam is say L. And apart from that, we have two shape memory alloy 

wires attached to it in this way. One is at the top surface here and another is at the bottom 

surface here. And, they are symmetrically placed which means the angle here and the angle 

here is same and the both the alloys have same property. And, let us say that the location   

at which, the wires are fitted is at a distance La from the root of the beam. 

So, at a distance Lb, we are applying the force. At a distance La, we are attaching the shape 

memory alloy wires for damping purpose. Now here, these two wires are prestressed which 

means this length, this length is more than original length of the wire, which means under 

this undeformed condition both the wires are under some tension, and the tension is equal 

because they are put symmetrically. So, if we look at the phase diagram of the shape-

memory alloy, which looks like this. Now, these wires are under prestress, tensile prestress. 

So, we may say that in the undeformed configuration, it is somewhere here. And, let us 

also assume that the material is under austenite condition, in this prestress condition. So, it 

is in austenite condition. So, xi equal to 0 here. And, because it is under some prestress, we 

may say that, in the phase diagram, the material is somewhere here and here xi is equal to 

0. So, when this beam tries to go up, when this beam tries to go up. So, this point moves 

up if the beam goes up, in that case, the length of the upper wire reduces, which means the 

tension is reducing here. So, it generates some amount of compression because of the 



upward movement. So, the net tension reduces. That means, in the phase plane diagram, 

the upper wire goes down. The stress reduces whereas, the bottom part of the wire 

experiences increasing length because this point is going up. So, because of that the tension 

here, it is under more tension. 

So, the beam further goes up, the top wire, the stress reduces for the bottom wire stress 

increases. So, when the bottom wire goes up and crosses this Ms and Mf lines, it becomes 

martensite. And then, when the beam deforms in the downward direction, the reverse thing 

happens. So, the top part of it comes down the bottom part of the wire, which is here, it 

comes down and comes here. In that way, both the wires along vertical line, which is 

parallel to parallel to the sigma line, goes up and goes down.  So that means, it shows some 

super elastic behavior. And we know that, when the behavior is superelastic, it is associated 

with some energy dissipation because a superelastic behavior looks like this. So, between 

the loading and unloading, we see this loop and that signifies deception of energy, and that 

is the source of damping generated due to the shape shape memory alloy wires.  

Now here, we have to keep one thing in mind that depending on the amount of prestress 

these wires have and depending on the deformation this beam is showing, the wires can 

also cross this line and go to the compression region, that is also possible. If the 

compression is not very high, that is ok. If the compression is very high, then due to the 

compression also phase transformation may take place and that we have to incorporate. 

However, if the compression is not so high, if the pre stress and the beam deformation is 

such that it barely touches this line or just shoots little bit down in that case, we do not 

bother about the phase transformation due to compression otherwise, we have to take care 

of that into account. So, that is the entire mechanism of damping augmentation by this 

shape memory alloy wires.  
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Now, if you want to go to the mathematical model, we need to first see, what are the forces 

acting on this beam. So, this is our beam fixed here and we have seen that we have a shape 

memory alloy wire here, and a wire here. So, we are just drawing the part which is attached 

to the beam. So, the top part has a tension T1 and the bottom part has a tension T2. 

Now, because they are symmetrically placed, when the beam is undeformed T1 and T2 are 

same. Otherwise, T1, T2 are different. And we have a force applied P here, that is the 

externally applied force. So, because of the externally applied force the beam vibrates and 

the wire because of its pseudoelastic nature, it tries to dampen the vibration.  

Now, if we draw the same diagram below, then these two forces T1 and T2, they give a 

horizontal force, which we can call FH bar, and they give a vertical force which we can call 

FV bar.  And apart from that, there would be a moment that is induced and that we can call 

as M bar. Again, if T1 and T2 are same in the undeformed configuration the moment is 0 

otherwise, there can be a moment. And the force P that was acting here that remains same. 

As per our consideration, this length is La and this is Lb. Now, also let us consider that the 

thickness of the beam is tb. Now, the question is what is FH bar? what is FV bar and so on?  

So, FH bar. If I consider this angle as theta and also this angle as theta in the undeformed 

configuration, then FH bar is minus of cosine theta and we have, T1 plus T2. And then, FV 

bar is T1 sin theta minus T2 sin theta. And M bar, M bar is cosine theta tb by 2 multiplied 

by T1 minus T2. 

�̅�𝐻 = −cos 𝜃 (𝑇1 + 𝑇2) 

�̅�𝑉 = 𝑇1 sin 𝜃 − 𝑇2 sin 𝜃 



�̅� = cos 𝜃
𝑡𝑏
2
(𝑇1 − 𝑇2) 

Because if, I look at the horizontal component of the force T1, it is T1 cosine theta and also 

the horizontal component of force is T2 cosine theta. So, T1 cosine theta and T2 cosine theta 

if they are not equal, they are going to give rise to a moment, which is of amount this, and 

P remains as it is. Now, considering all these forces that are applied, the variational form 

of the beam looks like this. The variational form is 0 to L, rho A w double dot, delta w, the 

variation of w, plus we have, the internal virtual work, which comes as w comma xx 

multiplied by w comma xx, here w comma xx means, derivative of w with respect to x 

done twice. Now comes the external virtual works due to these four forces. 

So, two forces Fv1, Fv bar, Fv1, Fv bar, and FH bar, and the moment M bar, and also this 

force P. Now, the virtual work due to the force FH bar is integral within the domain 0 to La 

of FH bar multiplied by w comma x into variation of w comma x. And then, we have applied 

force Fv bar. So, the virtual work here is Fv bar multiplied by the displacement here. So, 

that is Fv bar and the displacement at that point can be written as w at x equal to La. And 

then, we have moment M bar. And again, we can write the displacement, because its 

moment, we have to multiply by the virtual slope at that point. So, we have to put variation 

symbol here delta because it is a virtual displacement. And here it will be virtual slope. So, 

delta of del w by del x at x equal to La. And then we have externally applied force P. So, it 

is P multiplied by w at x equal to Lb. So, this is the total virtual work equation for this 

problem. 
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Now, the question is – why this expression is so, why is the virtual work done by FH bar   

looks like this. So, at this point, the force FH bar is applied and it is applied horizontally. 

Now, the virtual work done by this force is – this force multiplied by the virtual 

displacement at this point. Now, we are assuming that the  beam is  extensionally stiff. So, 

there is no extensional contraction in this direction. However, because the beam bends, and 

because of the deflection in the vertical direction. So, if the part of the beam from x equal 

to 0 to x equal to La in the undefined configuration was like this then, because of the 

deflection, it deforms in this fashion.   

Now, the length of the neutral axis remains same. So, this length is same as this length 

which means that, there should be some difference in x coordinate of this point from this 

point to keep the length same, because this is a curve and this is a straight line. And this 

displacement is half into w comma x square 0 to La dx. 



So, the virtual work done by that force is FH bar multiplied by half into variation of w 

comma x square integrated from 0 to La. And then, we know by the property of this operator 

that, this is equal to twice w comma x multiplied by variation of w comma x. So, finally, 

the expression becomes – w comma, finally, the expression becomes w comma x multiplied 

by variation of w comma x dx. So, that is here. 

∫ �̅�𝐻
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𝑑𝑥

𝐿𝑎

0
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Now, FH is this. So, once we take this negative sign inside this entire expression becomes 

positive. So, FH is a negative quantity that's why it works in this direction.  

(Refer Slide Time: 17:00) 

 

So, this is the virtual work expression for this.  

Next is, we have to do the finite element formulation. So, if we discretize this entire beam 

into a set of elements, it looks like this. So, we can call it element number 1, and this is a 

generic element maybe element number e and then let us call an element number N. So, at 

the second node of element number N say, we have the shape memory alloys wires 

attached. So, here the forces due to the shape memory alloy wire is experienced. So, I have 

Fv bar here, I have FH bar acting here, and I have the moment M bar acting here. And let 

us say we have element number M and at the end of the element number M, we have a 

force P, externally applied force P acting here. So, while discretizing, we have to make 

sure that, the point at which the loads are applied, this point loads are applied, they lie on 



some node. So, for this case, the first point where I have the shape memory alloy forces 

acting, that is at the second node of the Nth element.  And the point at which the force P is 

acting that is at the second node of Mth element.   

Now, we have to do the finite element formulation. So, after doing the formulation as 

described in last two lectures, the elemental equation that is obtained is m e multiplied by 

d e plus the elemental stiffness vector multiplied by d equal to 0. So, in this case we do not 

have any distributed force. 

[𝑚]𝑒{�̈�}
𝑒
+ [𝑘]𝑒{𝑑}𝑒 = {0} 

So, we are keeping the force vector 0. There are some discrete forces that will apply later 

on after assembling all the equations. Now, as we saw before the mij has the same definition 

rho A multiplied by Ni e Nj e dx. So, each element has a local coordinate system going 

from x equal to 0 to x equal to le, where le is the length of the element. We can write here 

once more.  

𝑚𝑖𝑗
𝑒 = ∫ 𝜌𝐴𝑁𝑖

𝑒𝑁𝑗
𝑒𝑑𝑥

𝑙𝑒

0

 

And k, k has two parts because if we look at, if we look at the virtual work equation here, 

k comes from this equation as well as this equation. So, finally, k has two parts, we can 

call it k1 e plus k2 e, k1 e has contribution from this expression, and k2 e has contribution 

from this expression. 

[𝑘]𝑒 = [𝑘]1
𝑒 + [𝑘]2

𝑒 

We know what is the contribution from this expression we discussed it in last two lectures. 

So, k1 e ij is as seen before E I N comma xx, Ni comma xx, and Nj comma xx, dx. And k2 

ij is negative of FH bar, multiplied by 0 to Le, into Ni comma x, multiplied by Nj comma x.  

𝑘1
𝑒
𝑖𝑗
= ∫ 𝐸𝐼𝑁𝑖,𝑥𝑥

𝑒 𝑁𝑗,𝑥𝑥
𝑒 𝑑𝑥

𝑙𝑒

0

 

So, if you follow the same procedure that was described while discussing finite element 

method in last two classes from this expression, we get this as a matrix. Now, this quantity 

is valid only between x equal to 0 to La, because this integral is from x equal to 0 to La. 

Beyond x equal to La, this quantity is 0. So, we can may be define a quantity here eta, which 

is multiplied here and we can say that eta equal to 1, when e is less than equal to N. 



𝑘2
𝑒
𝑖𝑗
= [−�̅�𝐻∫ 𝑁𝑖,𝑥

𝑒 𝑁𝑗,𝑥
𝑒 𝑑𝑥

𝑙𝑒

0

] 𝜂 

That means, any element where the element number is less than equal to N, which means 

any element which lies between x equal to 0 to La have eta equal to 1. That means, this 

quantity is as defined, otherwise eta equal to 0, when e is greater than N. So, anything 

beyond the element number N, those elements do not have any contribution from k2.  
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And the force matrix is 0 for the time being. And then, after we assemble it, after 

assembling the entire system looks like this. So, after assembling, this is our globally 

assembled matrix. The assembling process we discussed in the last two lectures. So, this is 

my global mass matrix and this is my global stiffness matrix. 

Mass matrix is multiplied with the global degrees of freedom, the second order derivatives 

of the global degrees of freedom and the stiffness matrix is multiplied with these d's. And 

then, what we do here is we apply the essential boundary condition. So, as per the essential 

boundary condition, the beam is fixed at the root, which means the first two degrees of 

freedom d1 and d2 is 0, because we know that d1 means, our d1 means displacement at the 

first point and d2 means slope at the first point. So, they are 0. So, we can just strike out 

these corresponding rows and columns. And whatever is remaining is our reduced set of 

equations by solving which we can get the solution. Now here, we have a globally 

assembled force matrix and this force matrix we are calling F.  
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Now, this force matrix is not entirely 0, because we have to incorporate the contributions 

from the point loads that are applied here. So, how would it come? to discuss that let us 

first look at the numbering of the global degrees of freedom. 

So, we have d1, d2. So, d1 is displacement at the first node. d2 is the second slope at the first 

node. And then d3, d4 it goes on. Here the degrees of freedom become d2N plus 1 and d2N plus 

2.  Similarly, at the end of the Mth element, it becomes d2M plus 1, d2M plus 2.  Now, the effect 

of FH is already incorporated, because my k2 matrix has FH here. I need to incorporate Fv 

bar, Fv bar is the vertically applied force here. So, that corresponds to the degree of freedom 

d2N plus 1, because d2N plus 1 is the displacement. So, force in the virtual work equation, force 

is multiplied with the virtual displacement, here the displacement is d of 2N plus 1. 

So, Fv bar corresponds to the degree of freedom d2N plus 1. Similarly, this is moment and the 

moment is multiplied by the virtual slope.  

And the slope is here d2N plus 2. So, M bar is multiplied with the variation of d2N plus 2. And 

here, I have force here, that corresponds to d2M plus 1.  
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So, accordingly in the force matrix we have to put – the definition of the force matrix goes 

like this: Fi equal to 0, if i is not equal to 2N plus 1, and i is not equal to 2N plus 2, and also 

i is not equal to 2M plus 1. So, other than 2Nplus 1, 2N plus 2 and 2M plus 1, for all other 

indices Fi is 0. And Fi, Fi at 2N plus 1, which we can write as F2N plus 1 is the vertically 

applied force, because we have seen that the vertical force due to those shape memory alloy 

wires corresponds to the degree of freedom d2N plus 1. And F2N plus 2 is accordingly M bar. 

And F2M plus 1 is accordingly P. So, the force matrix for these three indices has some values 

otherwise they are 0. So, here it is not that everything is 0, these three quantities are non-

zero, rest of them are 0.  
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Now, after we strike out everything, we are left with rest of the system, and we solve rest 

of it and we get our solution. 

So, the rest of the system, the global F equation, global finite element equation after 

applying essential boundary condition. Let us write as Md double dot, plus K global K, d 

equal to F. So, if we solve this equation, we will get our d. But here again, we have to 

understand few things that, the components of the force vector, if we go back which is 

which are F bar, M bar and P and also in the k2 matrix, we have FH bar, ok, not the P, P is 

the externally applied load. So, the other components F bar and M bar and this FH, they 

come from the contribution due to the shape memory alloy. And, the shape memory alloy 

wires have stresses and those stress are dependent on the strain in the shape memory alloy 

wire, and those strain depend on the displacement at this point. 

So, the force F bar, moment M bar and this force FH bar, they are function of the 

displacement at that point itself. So, here force is dependent on the displacement. So, based 

on the force we can solve and get the displacement, but again the displacement influences 

the force.  
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So, it is a highly non-linear problem and that needs to be solved by iteration and that we 

will discuss in the next class.  

Thank you. 


