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Constitutive Relations of Shape Memory Alloys 

Welcome to the 9th week. In this week we will talk about Constitutive Relations of Shape 

Memory Alloys. When we talked about the constitutive relations of piezoelectric materials, 

we saw that there are various approaches. So, today before starting with the constitutive 

modeling, we will see some of the approaches that have been used so far by various 

researchers for constitutive modeling of shape memory alloys.  Here are some of the 

approaches. First one is macroscopic phenomenological model. 

These models as the name suggests they are macroscopic and they used thermodynamics 

at the macro scale. And the thermodynamics gives the structure of the constitutive relation 

and then by using experiments we find out the actual coefficients. And in these models 

generally the state variables are strain, martensite fraction and temperature and these 

models are relatively simple. So, they can be easily applied to engineering problems and 

they are robust enough they capture good amount of physics. 
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However, they do not capture the micro scale phenomena. So, to capture the micro scale 

phenomena there are microscopic approaches where thermodynamic laws are applied at 

the micro scale. Now, in those models there are more complexities.  So, they are not good 



for large scale applications, but for micro scale phenomena like martensite growth, 

nucleation etcetera they capture very well and they are successfully applied for those kind 

of problems. And there is problem there are other models which are kind of hybridization 

between these two approaches. 

So, in this course we will talk about the microscopic models. Now, we have seen that a 

shape memory alloy shows both one way and two-way memory, but in this model we 

generally take care of only the one-way memory one-way shape memory effect. And these 

models we will restrict our self to one dimensional models because shape memory alloys 

are mostly used in wire forms. So, one dimensional models would suffice for those 

applications. So, we will talk about three models which are macroscopic phenomenological 

models. 

One is Tanaka model, Tanaka model then there is Liang and Rogers model and the third 

one is Brinson model.  So, let us start with the first one that is the Tanaka model. Now, 

Tanaka model is described with sufficient details in this paper by Tanaka, the thermo 

mechanical sketch of shape memory effect one dimensional tensile behavior. And also the 

other paper by Tanaka and his co-authors thermomechanics of transformation pseudo 

elasticity and shape memory effect in alloys shows good details of this model. And apart 

from that this paper by Liang and Rogers also talks about the Tanaka model with sufficient 

details. 
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Now, when we talked about the constitutive relations in piezoelectric materials we 

restricted ourselves to small strain problems. So, we made the assumption of small 

deformation and accordingly we could simplify few things. However, in shape memory 

alloy most of the applications involved large strain because we have seen that a material 

like nitinol can expand up to 8 percent and it can easily recover that. So, at those at that 

range of strain the problems are non-linear. However, a full treatment of non-linearity is 

not in the scope of this course generally a course like continuum mechanics treats   those 

things in full details. 

Here we look into those a non-linear effect very briefly so that we can explain the models. 

So, when we deal with large deformation problems we talk about two configurations a 

configuration which is before the deformation and a configuration which is after the 

deformation. So, this we can call is this is generally called a reference configuration and 

this is generally called a current configuration.  Now, if we have a point here in the 

reference configuration and if this point has a coordinate  capital X 1 capital X 2 capital X 

3 in 3D. Now please understand although for simplicity it is drawn in a 2D plane, but these 

bodies are 3D in general and then let us imagine that after deformation the same point has 

a new coordinate that is small x 1 small x 2 small x 3. 

In that way each and every point has a corresponding unique point in the current 

configuration. So, each configuration the reference configuration has a unique point in the 

current configuration. So, we can say that x i is equal to I mean x i is a function of the 

coordinate in the reference configuration and as well as t because with time the deformed 

shape changes. So, with time small x 1 small x 2 small x 3 changes.  Now with this we can 

define the matrix F and that is a 3 by 3 matrix where F i j is equal to partial of small x i by 

partial of capital X j and this is called deformation gradient. 

Now this quantity will be useful when we go to the constitutive relation its derivation. Now 

the basic principle behind deriving the constitutive relation is same while dealing with 

piezoelectric materials we saw that we write the Clausius Duhem inequality and in that 

inequality we use a suitable thermodynamic potential and we apply all the conservation 

laws and then using that inequality we get a certain form of the equation and that equation 

form gives us the constitutive relation same thing we do here. So, in Tanaka's model the 

thermodynamic potential that is used is Helmerth potential which is written as psi is equal 

to U minus s T where U is the internal energy, s as we defined before entropy, T is 

temperature. Now if we write Clausius Duhem inequality for this case it looks like this we 

have sigma i j minus rho 0 multiplied by del psi by del epsilon i j multiplied by E i j dot 

minus S plus del psi by del T multiplied by T dot minus del psi by del xi multiplied by xi 



dot rho 0 minus 1 by T Q i T comma i which is greater than equal to 0.  Now here we have 

some few newer terms first of all sigma i j sigma i j is stress and epsilon i j is strain. 
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Now again when it comes to large deformation problems there are various types of stresses 

and various types of strain because our initial configuration and different configuration is 

significantly different. Now in this case this stress is second Piola Kirchhoff stress and this 

strain is Green Lagrangian strain.  Both this stress about this second Piola Kirchhoff stress 

and Green Lagrangian stress are defined with respect to the undeformed or reference 

configuration. So, in when you talk about this second Piola Kirchhoff stress the force or 

area both are taken with respect to the reference configuration and these two stresses are 

energy conjugates. So, not any stress is energy conjugate of any strain. 

So, this stress sigma second Piola Kirchhoff stress is the energy conjugate of Green 

Lagrangian   stress strain. Now we have other quantities like rho 0 rho 0 is density at the 

reference configuration rho is the density at the current configuration.  So, we can see that 

in this problem we are considering event density to be using two separate variables for the 

reference and current configuration and then we have a term Q here.  So, Q as a vector Q 



as a 1 by 3 vector can be written as rho 0 divided by rho multiplied by q small q transpose 

multiplied by deformation gradient f which we defined before its inverse and its transpose 

where this q is heat flux vector. Now this equation gives us from this equation we can find 

out the constitutive relation. 
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If we look at this quantity that tells us how the stress is related to the potential and the 

strain.  So, we can write sigma is equal to del psi by del epsilon with rho 0 multiplied. Now 

here we intentionally dropped out those suffix as those subscripts i j to keep it simple and 

anyway finally, we will use it for one dimensional cases. So, that is fine. Now rho this 

sigma stress is a function of all the state variables epsilon psi and t. 

So, in the rate form we can say that the rate of change of sigma with time sigma dot is equal 

to del sigma by del epsilon multiplied by epsilon dot plus del sigma by del xi multiplied by 



xi dot plus del sigma by del T multiplied by T dot.  And again using this definition we can 

write it is equal to rho 0 multiplied by del 2 psi by del epsilon 2 multiplied by epsilon dot 

plus rho 0 multiplied by del 2 psi by del epsilon del xi multiplied by xi dot plus rho 0 

multiplied by del 2 epsilon by del xi del 2 psi by del epsilon del T multiplied by T dot. Now 

this quantity gives a material constant E. So, we write it E multiplied by epsilon dot this 

quantity gives a term omega. So, we write omega multiplied by xi dot and then this quantity 

gives a term maybe we can use capital phi. 

So, capital phi multiplied by T dot.  So, this is Young's modulus if the material is linearly 

elastic we can call it Young's modulus. So, it just says if my strain changes what is the 

corresponding change in the stress  this is a phase transformation constant  and this is 

thermo elastic constant. Now if we integrate both side suppose the  the stress is we are 

taking 2 time steps initial time step maybe ti the present  time step tf and in between these 

2 time step sigma is changing epsilon is changing xi is  changing t is changing. So, it is 

changing from sigma 0 to sigma epsilon 0 to epsilon xi 0 to xi t 0 to t. 

So, we can say sigma minus sigma 0 change in sigma equal to E multiplied by epsilon 

minus epsilon 0 plus omega multiplied by xi xi minus xi 0 plus capital phi multiplied by T 

Minus T 0. Now these constants E is in general a function of xi because we know that E 

has different values when the material is martensite and when it is austenite. So, when it is 

austenite xi is equal to 0 it has certain value of E and when it is martensite it xi is equal to 

1 and it has a certain value of E. So, we can say E as a function of xi is E A which means 

E at the austenite phase plus xi multiplied by E M Minus E A. So, we are using a rule of 

mixture here. 

So, at any point of time the material can be a can have certain martensite fraction. So, based 

on the martensite  fraction the effective E is this where E A is E E for austenite phase  and 

E M is E for martensite phase. Accordingly, even phi can also be defined as a function of 

xi using the rule of mixture. So, phi can be different for austenite and martensite phase and 

accordingly the rule of mixture gives phi as a function of xi as this.  Now although E is a 

function of xi, but in many cases specially in these models we will in some cases we will 

assume them to be constant to derive few relations. 

Now comes omega now comes omega is less than 0 and this can be proved also using some 

simple logic.  Let us say that it is transforming from austenite to martensite. Now during 

this transformation the stress is constant we are keeping the material free. So, there is no 

stress involved it is a purely temperature driven transformation. So, if you write the 

equation constitutive relation sigma minus sigma 0 is equal to 0 and during this 

transformation stress changes sorry strain changes. 
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So, that is epsilon minus epsilon 0 epsilon 0 may be a initial strain during the marten 

austenite phase it can be 0 also and then plus omega multiplied by xi minus 0 because 

initially in the austenite phase omega was xi was 0 during transformation at some point of 

time we have xi when transformation completes it becomes 1 and plus we have the phi 

term. Now the effect of that phi term is generally much less than the effect of these two 

terms. So, the strain due to the temperature much is generally much less than the I mean 

stress due to the temperature is generally much less than due to the other quantities. So, we 

can we are not writing that and even if you write that. So, whatever the expansion whatever 

the contraction is there due to reduction in temperature that is much less than the expansion 

due to the phase transformation. 

So, we are not writing that. So, we can write this same quantity as minus of xi 0. Now 

temperature is reducing it is becoming martensite. Now when it becomes martensite it 



strains. So,   it expands. So, this means that this quantity is a positive quantity and E is also 

a positive quantity. 

So, it is a positive quantity xi is a positive quantity. So, that tells me that omega is a negative 

quantity. So, omega is negative and also omega is related to the Young's modulus using 

this equation. Now this we are not going to discuss in details  here later on when we talk 

about the Liang and Rogers model we will talk about this relation  in more details because 

that is written in the paper by Liang and Rogers.  So, this was the first part of the 

constitutive relation where we related stress change with strain change. 

So, now, we already have a relation that relates strain change with strain change martensite 

fraction change at temperature change. Now we will need one more relation which relates 

the evolution of xi the change of xi with stress and temperature.  Now in the last week we 

already worked on that and we derived some relations based on some cosine functions, but 

that is not used in Tanaka model. In Tanaka model change in xi is related using exponential 

formulation. So, for austenite to martensite transformation as per Tanaka model xi is xi as 

a function of sigma and T is 1 minus a M multiplied by M s minus T plus b M sigma and 

for martensite to austenite transformation xi as a function of sigma and T is e to the power 

a A multiplied by a Ss minus T plus b A sigma. 

Now these quantities a M are defined as natural log of 0.01 divided by M s minus M f and 

we have a A that is natural log of 0.01 divided by A s minus A f and then we have and then 

we have b M that is equal to a M by c M and then we have b A and that is equal to A a by 

C A and this C A and C M are stress influence coefficients and they are defined as C M 

equal to 1 by d of A s by d sigma and C A equal to 1 by d of M s by d sigma. So, if you 

look at the phase transformation diagram that we drew before in the sigma T plane this is 

T and this is sigma and we have the slope of these lines A s and m s. So, d A s by d sigma 

is just the slope of this line and d m s by d sigma is just the slope of this line. 

Now we will look into a very look into a phenomenon with some simplistic point of view. 

So, let us assume E is independent of psi. So, is constant that is a big assumption because 

we know that E m and E a are quite  different however, sometimes these assumptions help 

to derive few things and these assumptions  you will find in the paper by Tanaka in the 

second one that that we listed at the  beginning. So, if we assume that the material is 

austenite at the beginning and then gradually we are increasing the gradually it is being 

loaded.  So, stress strain curve is following a linear fashion when the transformation starts 

the slope changes and then after the transformation after it is fully martensite it again 

follows the same thing. 

Now from here if we write if taking this as the starting position if we write the constitutive 

relation here we can write delta of sigma is equal to E multiplied by delta of epsilon plus 

omega that we are writing when the transformation has finished. So, xi has become 1. So, 



from here to here the change in sigma  is sigma minus sigma 0 which is delta sigma from 

here to here change in strain is delta  epsilon and from here to here change in xi is 1 because 

here transformation just started.  So, xi was 0 here transformation finish. 

So, xi is 1. So, that is the relation. So, we can write delta of epsilon equal to delta of sigma 

divided by E minus omega divided by E. So, graphically this quantity is my change in 

strain. So, that is delta of epsilon and if we draw the line and extend it and it intersects here. 

So, we can show it here may be. So, this quantity and we have two different quantities this 

quantity and this one. 

Now this quantity is omega by E and it is modulus and this quantity is my delta sigma by. 

So, we will look into these things in more details when we talk about the next model that 

is the Liang and Rogers model. Now again to summarize this model started from a 

thermodynamic potential which is Helmer's potential and then using the second law of 

thermodynamics with other conservation laws we got the constitutive relation. And in this 

entire we have two relations one is the relation that is between the  change in stress with 

change in strain change in martensite fraction and change in temperature  and there is 

another relation that shows the evolution of xi with sigma and T.  With those we can solve 

the problems and related to shape memory alloys. 
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Now here one big thing that is missing in the model is it does not take care of the stress 

and temperature induced martensite separately. So, in the phase diagram we had this as we 

know this is austenite zone this is martensite zone, but in the martensite zone as we increase 

the stress the material is supposed to de twin. So, it is supposed to transform from 

temperature to martensite stress induced martensite, but those things are not in count taken 

care of in this model. So, that is a limitation. So, the limitation is temperature and stress 

induced martensite are not treated separately or differentiated. 

So, later on when we see the Brinson's model we see that there is an effort to overcome this 

limitation. So, with this I would like to conclude this lecture here. 

Thank you. 


