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So, today we will continue with our discussion on Analysis of Composite Laminates which 

are Piezoelectric Patches. We started with the Galerkin technique. And then, after the 

Galerkin technique, to define these terms Nxp, Nyp, Nsp that we did in the previous lecture. 

Now, just one thing to note, this expression is written considering for one patch. So, this 

should be doubled, if I cannot consider two patches. And here, while writing the moment 

term, we have considered two patches. At top and bottom, or I should say two identical 

patches, identical, considering two patches   which are identical and which are actuated in 

an antisymmetric way, which can cause bending.  Now, if I consider two patches here, this 

just quantities get doubled.   
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All right.  Now then, we looked into the Rayleigh Ritz technique. And in the Rayleigh Ritz 

technique, this was the variational indicator that we wrote.  
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After putting all the expressions, we wrote all the terms, the inertia related terms, the 

internal virtual work terms, and these external virtual work terms, everything in terms of 

our approximations. Now, it is time to finally arrive at the final equations.   

So, this is what we started with and this we wrote, this we wrote, this we wrote, everything 

we wrote in terms of other approximations. So finally, if we put all the approximations 

here, we get a term like this, and then, we will get a term like this, and that is equal to 0. 

∫ 𝛿{𝑞𝐼}𝑇[⋯ ]𝑑Ω

 

Ω

+ ∫ 𝛿{𝑞𝑤}𝑇[⋯ ]𝑑Ω

 

Ω

= 0 

And again, we know that, these variations are independent, and these are arbitrary 

variations.  So, this entire quantity can be 0, only when, I have this equal to 0, and this 

equal to 0. So, this gives us M plus N equations, and this gives us P equations, where M 

and N are the number of terms used to approximate our u0 and v0, and P is the number of 

terms which is used to approximate our w. So, finally, the equation that would look like is 

this. Now, we will define these matrices. And, in the righthand side, we have FI.   

[𝑀𝐼𝐼]{�̈�𝐼} + [𝑀𝐼𝑊]{�̈�𝑊} + [𝐾𝐼𝐼]{𝑞𝐼} + [𝐾𝐼𝑊]{𝑞𝑊} = {𝐹𝐼} 

Similarly, here we have FW.  

[𝑀𝑊𝐼]{�̈�𝐼} + [𝑀𝑊𝑊]{�̈�𝑊} + [𝐾𝑊𝐼]{𝑞𝐼} + [𝐾𝑊𝑊]{𝑞𝑊} = {𝐹𝑊} 



So, this is our M plus N equations, and this is a system of P equations. Now, we have to 

define these matrices MII is the integral over the surface of NI transpose, multiplied by mII 

into NI. Then, I have MIW, which is NI mIW multiplied by NW. 

[𝑀𝐼𝐼] = ∫[𝑁𝐼]𝑇[𝑚𝐼𝐼][𝑁𝐼]𝑑Ω

 

Ω

                                  [𝑀𝐼𝑊] = ∫[𝑁𝐼]𝑇[𝑚𝐼𝑊][𝑁𝑊]𝑑Ω

 

Ω
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And then, we have, MWI is equal to NWT, multiplied by mWI, multiplied by NI transpose, d 

omega.  Sorry, this is capital MW that we are talking about. Similarly, here we have MWW, 

and we have NW T, multiplied by mWW, multiplied by NW, d omega.  

[𝑀𝑊𝐼] = ∫[𝑁𝑊]𝑇[𝑚𝑊𝐼][𝑁𝐼]𝑑Ω

 

Ω

                                  [𝑀𝑊𝑊] = ∫[𝑁𝑊]𝑇[𝑚𝑊𝑊][𝑁𝑊]𝑑Ω

 

Ω

 

Then comes the stiffness terms. So, we have KII which is equal to BI transpose, multiplied 

by A, multiplied by BI, d omega. 

Here, we have KIW which is equal to BI transpose, multiplied by the B matrix, multiplied 

by BW transpose.   

[𝐾𝐼𝐼] = ∫[𝐵𝐼]𝑇[𝐴][𝐵𝐼]𝑑Ω

 

Ω

                                  [𝐾𝐼𝑊] = ∫[𝐵𝐼]𝑇[𝐵][𝐵𝑊]𝑇𝑑Ω

 

Ω

 



Then, we have KWI which is equal to BW transpose, multiplied by the B matrix, multiplied 

by the BI matrix. We have KWW which is D matrix, sorry, which is BW matrix, multiplied 

by D matrix, multiplied by BW.   

[𝐾𝑊𝐼] = ∫[𝐵𝑊]𝑇[𝐵][𝐵𝐼]𝑑Ω

 

Ω

                                  [𝐾𝑊𝑊] = ∫[𝐵𝑊]𝑇[𝐷][𝐵𝑊]𝑑Ω

 

Ω

 

And then, if we -   so, in the previous - so, we have called it FI.  and then we have the FI 

matrix, and which is BI transpose, multiplied by NP d omega plus omega, NI transpose 

multiplied by qx qy. 

{𝐹𝐼} = ∫[𝐵𝑊]𝑇[𝑁𝑝]𝑑Ω

 

Ω

+ ∫[𝑁𝑝]
𝑇

{
𝑞𝑥

𝑞𝑦
} 𝑑Ω

 

Ω

 

And here, we have FW which is BW transpose, multiplied by MP d omega plus NW transpose, 

multiplied by qz.   

{𝐹𝑊} = ∫[𝐵𝑊]𝑇[𝑀𝑝]𝑑Ω

 

Ω

+ ∫[𝑁𝑊]𝑇{𝑞𝑧}𝑑Ω

 

Ω

 

Now, inside FI, the force matrix, we have contribution from the NP's and the applied forces. 

And similarly, in FW, we have contributions from MP's and the applied transverse forces.  

So, this is the entire formulation based on the Rayleigh Ritz technique.   

(Refer Slide Time: 10:36) 

 



So, here we can see that if the laminate is symmetric, then these two terms vanish; because 

in a symmetric laminate, B matrix is 0 and this stiffness matrix, and this stiffness matrix, 

they have B matrices. 

So, these two stiffness matrix does a stiffness coupling between the in-plane components 

and the out-of-plane components. So, if our laminate is symmetric and if we know that the 

applied force is only along the x y direction, so, we can separately just solve this. We can 

separately solve MII, qI double dot, plus KII, qI is equal to FI because we know that there is 

no coupling between the stiffness and in plane and out of plane terms, and the load is purely 

in plane. So, there is nothing going to be induced in the out of plane direction.  In that case, 

we can solve the decoupled problem. Similarly, if the load is applied purely along the z 

direction, in that case also we can just solve MWW, qW double dot, plus KWW, qW is equal 

to FW.  

But, if the laminate is not symmetric, in that case B matrix exists. And if the B matrix 

exists, then this coupling matrices, KIW and KWI, they remain non zero. And when they are 

non zero, then even if my load is purely in plane, it will induce out of plane deformation, 

or if the load is purely out of plane, it will induce in plane deformation. In that case, the 

entire system has to be solved. 
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Now, let us look into our example of pure in plane deformation. So, let us imagine that we 

have a composite laminate with piezoelectric patches which looks like this when we view 

from top. So, this is our x direction, this is y direction. Along the x direction, the dimension 

is L,  and along the y direction, the dimension is C. So, from here to here, it is C by 2, from 



here to here it is C by 2. And then, if we look at the same thing in the x z plane, it looks 

like this. 

We can assume that the peizo patch is distributed all over. Even, if it is not distributed all 

over, our formulation can care of that, that is not a problem.  So, this is in the x z plane.  

So, this part is tc, and for the sake of simplicity, let us assume that we have two identical 

piezoelectric patches of same thickness. 

So, these are our - this is a piezo patch, and this is composite laminate. And this is another 

piezo patch. And we have two identical piezo patches actuated symmetrically by voltage 

V.  So, V top is equal to V bottom is equal to voltage V,  and because they are actuating 

symmetrically,  it will induce only in plane deformation. And also for the sake of simplicity, 

while assuming let us imagine that our deformation along y is not accounted for. So, if that 

is the case, then accordingly, let us make some approximations. 

So, assume u0 which should be as a function of x and y. Let us assume, it to be only function 

of x, and then, there is no variation along the y direction. So, I would say that it is not just 

the deformation, it is the deformation variation along y direction. So, it is u0 and let us 

approximate only one term solution. So, there is no summation. We are approximating only 

one term solution. So, let us assume that to be phiu1, multiplied by qu1. And let us assume, 

phiu1 to be x by L. It is x by L multiplied by qu1. Now, this satisfies the essential boundary 

conditions. 

So, at x equal to 0, u0 is 0. And again, because there is no out of plane deformation, our 

laminate is symmetric. So, for pure in plane deformation, let us assume symmetric 

laminate. And the actuation is such that it does not induce any moment. It induces only in 

plane forces. So, we can solve it as a purely axial problem. So, in that case the stiffness is 

like qIW, and qWI can be neglected, and let us solve it as a static problem.  Now, if that is 

the case, we solve only this: KII multiplied by qI is equal to FI.  

(Refer Slide Time: 18:00) 



 

Now, we have K, K consists of only KII, and that is equal to our integral over the surface  

BI T, multiplied by A, multiplied by BI. Now, please understand that because we do not 

have other components of K's, we have only KII. So, we are just writing it as K, we are not 

specifying. And this becomes minus c by 2 to c by 2, and we have to put the approximate, 

I mean, the B matrix in terms of the approximations.  So, as per our approximation, 

epsilon0x, epsilon0y, and epsilon0s,  that is in terms of if we write qu1,  then it becomes phiu1 

comma x, phiu1 comma y, there is no – phiv1, and  then we have phiu1 comma y. So, not 

only our variation of the u0 along y0, even our v is also 0. So, v0 is 0. And then this B matrix 

and then, this entire thing is multiplied with qu1. 

{

𝜀0𝑥

𝜀0𝑦

𝜀0𝑠

} = {

𝜙𝑢1,𝑦

0
𝜙𝑢1,𝑦

} 𝑞𝑢1 

So, we can say that our B matrix is essentially phiu1 comma x is 1 by L, 0, and phi is not a 

function of y. So, it is also 0. So, BI is essentially 1 by L, 0, 0. So, this is 1 by L, 0, 0. A 

matrix remains as it is. And this is 1 by L, 0, 0.  And this entire integration has to be 

evaluated along y, it is from minus c by 2 to c by 2, and along x, it is from 0 to L. Now, if 

we do the entire multiplication, this expression comes to be 1 by L square multiplied by 

Axx. And finally, after integrating  this comes to be Axx, multiplied by c by L. So, K has 

only one component. So, we can call it K11 also. And similarly, our F matrix:  that is also 

going to have only one component, we will see that. 



𝐾11 = ∫[𝐵𝐼]𝑇[𝐴][𝐵𝐼]𝑑Ω

 

Ω

= ∫ ∫ {
1

𝑙
0 0} [𝐴] {

1

𝑙
0
0

} 𝑑𝑦

𝑐/2

−𝑐/2

𝑑𝑥

𝑙

0

 

𝐾11 = ∫ ∫
1

𝑙2
𝐴𝑥𝑥𝑑𝑦

𝑐/2

−𝑐/2

𝑑𝑥

𝑙

0

=
𝐴𝑥𝑥𝑐

𝑙
 

And F matrix is going to be - as per our definition, it is BI transpose, multiplied by the NP 

matrix. So, it is again 1 by L, 0, 0. And we have NPx, and NPy, and 0. This expression after 

the integration comes to be 0 to L, NPx into L into c.  

𝐹1 = ∫ ∫ {
1

𝑙
0 0} {

𝑁𝑝𝑥

𝑁𝑝𝑦

0

} 𝑑𝑦

𝑐/2

−𝑐/2

𝑑𝑥

𝑙

0

= 𝑁𝑝𝑥𝑙𝑐 

Now, we can always solve, and there is only one components, we can call it F1. So, we can 

always solve qu1, multiplied by K1 is equal to F1 that would give us qu1 as F1 by K11. 

𝐾11𝑞𝑢1 = 𝐹1  

⟹ 𝑞𝑢1 =
𝐹1

𝐾11
 

So, once we get our qu1, we know the solution.   
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Now, we will solve the same problem using the Galerkin technique.  

To solve it using Galerkin technique, let us make a different approximation. Let us 

approximate that our variation of u0 along y is not there,  and v0 is not there.  So, it is x by 

L minus half into x by L square, and v0 is 0. So, there is no v0. That is a much simplified 

approximation. 

𝑢0(𝑥, 𝑦) = 𝑢0(𝑥) = [
𝑥

𝑙
−

1

2
(

𝑥

𝑙
)

2

] 𝑞𝑢1 

𝑣0(𝑥, 𝑦) = 0 

Now, when we solve it using the Galerkin technique, the phi is this. So, this has to be 

multiplied with qu1 and which we call phiu1 multiplied by qu1. So, this phiu1 is going to be 

differentiated twice. So, that is why we had to use a different approximation functions and 

it is satisfies both the geometric and force boundary conditions. So, our geometric boundary 

condition is : that this part is clamped. So, u0 is 0 here and the force boundary conditions 

is - at the free end, there is no force.  So, u0 is equal to 0 at x is equal to 0, and del u0 by  

del x is equal to 0 at x equal to L. And this approximation satisfies those conditions.  

𝑢0 = 0  𝑎𝑡  𝑥 = 0 

𝜕𝑢0

𝜕𝑥
= 0  𝑎𝑡 𝑥 = 𝑙 

Now, we know that we already discussed the governing equations. And we know that 

according to that  the differential equation is this.  

𝐴𝑥𝑥

𝜕2𝑢0

𝜕𝑥2
=

𝜕𝐹𝑝𝑥

𝜕𝑥
 

And then, we define an error function -  the error function that we define is, or it is a residue. 

So, the residue that we define is minus of del Fpx by del x.   

𝜖(𝑥) = 𝐴𝑥𝑥

𝜕2𝑢0

𝜕𝑥2
−

𝜕𝐹𝑝𝑥

𝜕𝑥
 

Now, what we do is that we multiply this residue by the basis functions one by one. In that 

case, we have only one. So, we just multiply with phiu1 and integrate it over the surface 

and make the residue 0 and that gives us the desired equation solving which we can find 

out qu1. So, we have phiu1, multiplied by epsilon, d omega integrated over the omega is 0.  

∫ 𝜙𝑢1𝜖𝑑Ω = 0

 

Ω

 



And which also tells us that phiu1, multiplied by Axx, multiplied by del 2 phiu1 by del x 2, 

multiplied by qu1 minus del Fpx by del x, d x.  It is d omega, and that is equal to 0.  

∫ 𝜙𝑢1 (𝐴𝑥𝑥

𝜕2𝜙𝑢1

𝜕𝑥2
𝑞𝑢1 −

𝜕𝐹𝑝𝑥

𝜕𝑥
) 𝑑Ω

 

Ω

= 0 

Now, here we can see that this phi u had to be differentiated twice. So, that is why we had 

to make this approximation.  The previous approximation that we made while solving using 

the Rayleigh Ritz technique does not work here. 

And then finally, after evaluating all these integrations, and we know that this d omega is 

equal to 0 to L, minus c by 2 to c by 2 d y d x. 

∫ 𝑑Ω

 

Ω

= ∫ ∫ 𝑑𝑦

𝑐/2

−𝑐/2

𝑑𝑥

𝑙

0

 

So, after evaluating these integrals finally,  qu1 comes to be 3 l Npx divided by 2 Axx.  

𝑞𝑢1 =
3𝑙𝑁𝑝𝑥

2𝐴𝑥𝑥
 

Now, here Fpx is basically our Npx. The first term in that is Fpx vector. So, that is the solution, 

that is obtained using the Galerkin technique. 
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So, we have solved this in plane problem using both the Galerkin technique and the 

Rayleigh Ritz technique.  In the next class, we will solve an out of plane problem, where 

there will be pure bending.   

So, with that let us conclude this lecture.  

Thank you 


