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In today's lecture, we will discuss about Composite Laminates.   

So, far we have seen the properties of composite plies or lamina.  In the last lecture, we 

defined the properties with respect to the x y, which is a global system. Now, today  we 

will discuss the properties of a laminate with respect to the global system. And we will see, 

the relation between the stress resultants in the laminates with the strains.   

So, our composite laminate looks like this. It is made of several plies.  One more ply. And 

then, we know the properties of the individual plies. We know their stress strain relation 

with respect to their own fiber orientation direction, and with respect to a global x y 

direction as well. So now, today we will integrate the quantities along the thickness of the 

ply, thickness of the laminate, and we relate the stress resultants in terms of the strain 

components and the strains are already related to the displacement components. So finally, 

it would relate the stress resultants with respect to the displacement components. 

Now, we have sigma x, sigma y and sigma s as our stress components. So, if we integrate 

this sigma x along the thickness, so z is the thickness direction.  So, if we integrate the 

properties that the sigma x along the thickness direction, that gives us our Nx, which is 

normal force along x.  If, we integrate sigma y along thickness direction that give us Ny, 

which is normal force along y direction, and if we integrate sigma s along z that gives us 

Ns, which is shear force. And then, if we multiply sigma x with minus z, and integrate that 

gives us a moment Mx. 

Now, please understand this if we integrate sigma x after multiplying with minus z along 

the z direction, the moment that we get is with respect to the y direction.  So, this moment 

is acting with respect to y direction. So, it's a moment like this. It's a bending moment like 

this. It acts with respect to y direction, but still instead of calling it Mᵧ, we are calling it Mx 

just because we are getting it by integrating sigma x.  Similarly, we get another quantity 

My and this acts with respect to x direction, but still because we are getting it by integrating 

sigma y we are calling it Mᵧ and we get a moment Mₛ which is a twisting moment in the 

xy plane.  So, today we have to get these quantities and relate this quantities Nₓ, Nᵧ, Nₛ, Mₓ, 

Mᵧ, Mₛ with respect to the strain components and accordingly we this relation comes with 

respect to the displacement components as well. 



∫ 𝜎𝑥𝑑𝑧 = 𝑁𝑥 ∫ −𝑧𝜎𝑥𝑑𝑧 = 𝑀𝑥

∫ 𝜎𝑦𝑑𝑧 = 𝑁𝑦 ∫ −𝑧𝜎𝑥𝑑𝑧 = 𝑀𝑥

∫ 𝜎𝑠𝑑𝑧 = 𝑁𝑠 ∫ −𝑧𝜎𝑥𝑑𝑧 = 𝑀𝑥

 

 

Now, before doing that, let us define few things. So, let us look at the stack of plies as this.  

So, we are looking it just from one side. So, we get to see something like this. So, we have 

plies. So, this is layer 1, layer 2, we can call it generic layer as layer k and then we have N 

number of layers and we define the mid plane as our axis. 

So, with us we define z with respect to the mid plane. So, this can be x or y axis depending 

on from which direction we see it and our z goes here. So, this point, the z coordinate of 

this point we call z0, the z coordinate of this point we call z1, z2 and this is the kth layer. 

So, here we have zk-1, here we have zk, here we have zN-1, here we have zN. So, we can say 

that the z coordinate, z coordinate of the junction between the k minus 1 and kth layer is 

zk-1 and the z coordinate of the junction between the kth and the k plus 1 th layer is zk.  

Now, if we want to find our N vector. So, N vector is just a vector of Nx, Ny and Ns. So, if 

you want to get that we just have to integrate our sigma vector and sigma is just this. So, 

this is sigma x, sigma y, sigma s.  

{𝑁} = {

𝑁𝑥

𝑁𝑦

𝑁𝑠

} = ∫{𝜎}𝑑𝑧 = ∫ {

𝜎𝑥

𝜎𝑦

𝜎𝑠

} 𝑑𝑧 

Now, this integration is from here to here, along the entire thickness.  So, what we will do 

is - we will break the integration into different, I mean, we will break the integration into 

different plies.  So, we will integrate over each ply and then sum it up. So, we can write 

this integration as k is equal to 1 to N, zk-1 zk because kth ply spans from zk-1 to zk and then 

we integrate.  

{𝑁} = ∑ ∫ {𝜎}𝑑𝑧

𝑧𝑘

𝑧𝑘−1

𝑁

𝑘=1

 

Now, for the kth ply, we can write our stress as the Q matrix with respect to xy system for 

the kth ply multiplied by epsilon.  This relation we already derived in the last lecture.   

{𝑁} = ∑ ∫ [𝑄]𝑥,𝑦
𝑘 {𝜀}𝑑𝑧

𝑧𝑘

𝑧𝑘−1

𝑁

𝑘=1

 



Now, if we write the strain displacement relation, we know that epsilon x is equal to del u 

by del x minus z multiplied by del 2 w by del x 2 and we call it epsilon x 0 minus kappa x, 

or let us put the 0 in the superscript as well as epsilon 0 x.  

𝜀𝑥 =
𝜕𝑢0

𝜕𝑥
− 𝑧

𝜕2𝑤

𝜕𝑥2
= 𝜀0𝑥 − 𝑧𝜅𝑥 

Accordingly, we already know, we are, our assumption is - there is no shear deformation.  

So, as per this we can write epsilon y which is normal strain along y direction in the same 

way and that becomes epsilon 0 y minus kappa y. So, we are calling del 2 w by del x 2 as 

kappa x, and del 2 w by del y 2 as kappa y. I have to multiply by minus z.  

𝜀𝑦 =
𝜕𝑣0

𝜕𝑦
− 𝑧

𝜕2𝑤

𝜕𝑦2
= 𝜀0𝑦 − 𝑧𝜅𝑦 

And accordingly, we can write epsilon s is equal to epsilon 0 by epsilon y plus, sorry, del 

u0 by del y plus del v0 by del x minus twice z del 2 w by del x del y.  So, this becomes 

epsilon 0 s minus z into 2 kappa s.  

𝜀𝑠 =
𝜕𝑢0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑥
− 2𝑧

𝜕2𝑤

𝜕𝑥𝜕𝑦
= 𝜀0𝑠 − 2𝑧𝜅𝑠 

So, we are calling twice del 2 w by del x del y as kappa s. So, this entire epsilon vector can 

be written as epsilon 0 minus z into kappa. So, epsilon 0 is a vector of epsilon 0x, epsilon 

0y, epsilon 0s and kappa is a vector of kappa x, kappa y and kappa s.   

{𝜀} = {𝜀0} − 𝑧{𝜅} 

So, we can bring everything here and write k is equal to 1 to N within each layer we 

integrate from zk-1 to zk and this can be written as multiplied by epsilon 0 minus z kappa 

and this entire thing is integrated. So, these are the relations strain displacement relations 

using which we can write this.  

{𝑁} = ∑ ∫ [𝑄]𝑥,𝑦
𝑘 {𝜀0} − 𝑧[𝑄]𝑥,𝑦

𝑘 {𝜅}𝑑𝑧

𝑧𝑘

𝑧𝑘−1

𝑁

𝑘=1

 

Now we are integrating this Q's over thickness and summing it up.  Now this epsilon 0 

does not is independent of z. So, it can be taken out of the integral.  So, these Q's are 

integrated over the thickness and summed up.  Similarly, here, kappa is independent of z. 

So, it can be taken out.  So, minus z Q can be integrated over the thickness and can be 

summed up. 

(Refer Slide Time: 12:14) 



 

So, finally, we can write a relation like this, where our A is summation of k is equal to 1 to 

N of the integral of k from zk-1 to zk. And similarly, we can define a quantity B which is 

similar integration but the integrand is minus z multiplied by Q. So this is one relation. So, 

our N vector is equal to A epsilon plus B kappa.  

{𝑁} = [𝐴]{𝜀0} + [𝐵]{𝜅} 

[𝐴] = ∑ ∫ [𝑄]𝑥,𝑦
𝑘 𝑑𝑧

𝑧𝑘

𝑧𝑘−1

𝑁

𝑘=1

                         [𝐵] = ∑ ∫ −𝑧[𝑄]𝑥,𝑦
𝑘 𝑑𝑧

𝑧𝑘

𝑧𝑘−1

𝑁

𝑘=1

 

Now we define another vector which is M, and M as we know is it obtained by integrating 

minus z into stress.   

{𝑀} = ∑ ∫ −𝑧{𝜎}𝑑𝑧

𝑧𝑘

𝑧𝑘−1

𝑁

𝑘=1

 

So, now we can write same thing, minus z into stress. And this becomes minus z into minus 

z into Q multiplied by epsilon 0 plus z square multiplied by Q into kappa and this entire 

thing is integrated and summed over.   

{𝑀} = ∑ ∫ (−𝑧[𝑄]𝑥,𝑦
𝑘 {𝜀0} + 𝑧2[𝑄]𝑥,𝑦

𝑘 {𝜅})𝑑𝑧

𝑧𝑘

𝑧𝑘−1

𝑁

𝑘=1

 



Again epsilon 0 goes out and we are left with minus z into Q and we know that if we 

integrate minus z into Q and summed up, we get a quantity called B that we have already 

defined it. So, this is B into epsilon 0 and here, we have z square Q, its integration and its 

summation and let us call this quantity as D. 

{𝑀} = [𝐵]{𝜀0} + [𝐷]{𝜅} 

So, let us define D as k is equal to 1 to N. Integral of z square Q over zk-1 to zk.   

[𝐷] = ∑ ∫ 𝑧2[𝑄]𝑥,𝑦
𝑘 𝑑𝑧

𝑧𝑘

𝑧𝑘−1

𝑁

𝑘=1

 

Now, we can always write this entire quantity in a more compact form as this. So, this is 

how the stress resultants which are forces and moments are related to the strain 

components. 

{
{𝑁}
⋯

{𝑀}
} = [

[𝐴] ⋮ [𝐵]
⋯ ∙ ⋯

[𝐵] ⋮ [𝐷]
] {

{𝜀0}
⋯

{𝜅}
} 

Now we can see that the certain parts of this matrices become 0 or there are certain relations 

that comes up between these parts of matrices depending on the lamination sequence. So, 

we will now see that. So, for example, we can see here that this B matrix relates the in 

plane force components with the out of plane displacements because, these are the in plane 

force components, these are the bending moments. Here, we have epsilon 0, it has u0 and 

v0 only.  So, again it has in plane displacement components and kappa has out of plane 

displacement which is w. So, u v w are displacement along x y and z, and u0 v0 are the mid 

plane displacement components and w is the out of plane displacement component.  So this 

B matrix signifies that even if there is no in plane displacement components, suppose in 

plane displacement component is 0, even then, just out of plane displacement components 

because of this coupling can give rise to something N. Or in other words, if I apply pure in 

plane load, then also some kappa which contains out of plane displacement can be induced. 

Similarly, here M, if I do look at this relation, M is equal to B into epsilon 0 plus D. This 

also means that if I just apply pure bending, I can get in plane displacement components 

and in plane strength as well.  So, A is our in plane stiffness, D is our bending stiffness  and 

B is coupling stiffness.  So, A signifies in plane stiffness,  B signifies coupling stiffness we 

can say  and D signifies bending stiffness.  And also, we can see that this A is a 3 by 3 

matrix.  So, it has components like Axx, Axy, Axs. So, a quantity like Axs, it couples the 

normal force components with the shear strength. Similarly, I can have Dxs also and that 

couples bending moment with the twisting moment.  
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So, we can get rid of some of the couplings by proper lamination sequencing. Sometimes 

the couplings are desirable, sometimes they are non-desirable. So, let us look into a 

symmetric laminate. So, a symmetric laminate as the name suggests, has the plies 

orientation symmetrically placed. So, again let us imagine that we have something like this.  

So, layer 1, this is layer N. This is layer 2, this is layer N minus 1. And we can call a generic 

layer k and a symmetrically opposite layer is k prime.  So, these are our mid plane z is 

equal to 0. So, with respect to this mid plane, this ply, I mean, this layer and this layer 

symmetrically placed.  Similarly, this layer and this layer symmetrically placed. This layer 

and this layer at the symmetrical location. This layer and this layer the symmetrical 

location. Now, if at these locations, for example, at layer k, and at layer k prime, if the 

orientation is, if the ply orientation is same, we call it a symmetric laminate.  Similarly, if 

at layer 1 and at layer N, if the ply orientation is same, if the layer 2 and at layer N minus 

1, if the ply orientation is same and accordingly, for any k, if the ply orientation at k and k 

prime location, they are same, we call it a symmetric laminate. So, orientation and ply 

thickness both have to be same. So, in all our analysis, we are assuming that our ply 

thickness is all same, all the plies have same thickness.  So, for example, a laminate like 

this, which is generally, we show a lamination sequence in this form – theta 1. Suppose, 

we consider this, this sequence where I have 1, 2, 3, 4, 5, 6, 7, 8. 8 number of plies.  

Suppose, our laminate sequencing is this – theta 1, theta 2, theta 3, theta 4, then we have 

supposed theta 5, theta 6, theta 7, theta 8.  So, the lamination sequence is shown in this 

form: theta 3 theta 4 theta 5 theta 6 theta 7, theta. Theta 1 theta 2 theta 3 theta 4 theta 5 

theta 6 theta 7 theta 8.  So, this is how the lamination sequence is shown.   

[𝜃1|𝜃2|𝜃3|𝜃4|𝜃5|𝜃6|𝜃7|𝜃8] 



Now suppose, in our case theta 5 it is symmetric. If it is symmetric, then we have theta 5 

is equal to theta 4, theta 6 is equal to theta 3, theta 7 is equal to theta 2, theta 8 is equal to 

theta 1. So, in this case we can show it as theta 1 theta 2 theta 3 theta 4 s, s means it is 

symmetric. 

[𝜃1|𝜃2|𝜃3|𝜃4]𝑠 

So, it repeats itself in a symmetric fashion.  So, for a symmetric laminate, it can be shown 

that the B matrix is always 0 for a symmetric laminate always.  It can be proved easily also. 

So, we know that the property of the Q, Q at kth ply and Q at k prime ply, they are same. 

So, if we add the contribution to the B matrix from this ply, and if I add the contribution to 

the B matrix from this ply they are just opposite of each other and on being added they 

become 0. So, that way if we do it for all the plies the entire B matrix comes to be 0 So, in 

a symmetric laminate, there is no coupling between the in plane and the outer plane 

components.   

(Refer Slide Time: 25:22) 

 

Now there is something called a balanced laminate.  In a balanced laminate, it is something 

where we have number of plies with theta 1 orientation is same as number of or theta i 

orientation is same as number of plies with minus theta i orientation.   

So, a laminate like this: suppose 30 degree, 40 degree, minus 30 degree, minus 40 degree 

generally, we don't show the degree sign while writing the lamination sequence, we can 

get rid of, it also it is understood. So, that is a balanced laminate because if I have a 40, I 

have one minus 40, if I have 30, I have one minus 30.  



[30|40| − 30| − 40] 

Similarly, if I have something like 30, 45, minus 45, 45, minus 45, minus 30, it's also 

balanced, because I have one 30, I have one minus 30, I have two 45s and I have two minus 

45s. So it is balanced.   

[30|45| − 45|45| − 45| − 30] 

So, these are for angle ply laminates angle ply means where the angle of orientation is 

neither 0 nor 90, it is an angle ply laminate. And if the orientation of ply is either 0 or 90, 

we call it a cross ply laminate.  Now in a cross ply laminate, 0 and 90 are supposed to be 

opposite.  So, 90, 0, 90, 0 this is also balanced because, as we said 90 and 0 are opposite in 

a cross ply laminate. So, if I have two 90s, I have two 0s also. So they are all balanced.  So, 

these are all balanced laminates.  

[90|0|90|0] 

Whereas something like this, if I have 30 minus 30 90 90, this is not balanced because, I 

have one 30. So, I have one minus 30, that is ok, but I have one 90 for this I should have a 

0, but that is not there I have another 90. So, it is not balanced.   

[30| − 30|90|90] 

Now again this balanced laminate can be of different types. So, it can be symmetric and 

balanced. So, before going into, it can be symmetric. So, symmetric means which is 

symmetric as well as balanced.  So, for example, plus minus theta 1, plus minus theta 2, 

symmetric, that is a balanced laminate.  

[±𝜃1|±𝜃2]𝑠 

An example can be 30, minus 30, 45, minus 45, symmetric. So, it is a symmetric as well 

as balanced.  It can be antisymmetric.  

[30|−30|45|−45]𝑠 

Antisymmetric means plus theta 1, plus theta 2, minus theta 2, minus theta 1, that is 

antisymmetric.  Because with respect to mid plane, if I look at two locations which are 

symmetrically located the orientations are just opposite. So, if I have theta 2 here I have 

minus theta 1 here, if I have theta 1 here, I have minus theta 1 here. 

[+𝜃1|+𝜃2| − 𝜃2|𝜃1] 

So, an example is 30, 30, let us call it 30, 45, minus 45, minus 30, that is anti-symmetric.  

[30|45| − 45| − 30] 



And there can be asymmetric.  So, it is neither symmetric nor anti-symmetric.  So, it can 

be supposing theta 1, minus theta 2, minus theta 1, minus theta 2. So, it is neither symmetric 

nor anti symmetric.  if we look at it with respect to the mid plane, we can see that. 

[+𝜃1|−𝜃2| − 𝜃1|𝜃2] 

So, maybe 30, it is plus.   I cannot have two minus. So, it is plus. 30, 45, minus 45, minus 

30. So, it is asymmetric.   

[30|45| − 45| − 30] 

(Refer Slide Time: 31:29) 

 

Now, for any balanced laminates: Now, Axs is equal to Ays is equal to 0 for any balanced 

laminates, it can be proved. And then, if the laminate is antisymmetric, then we have Dxy 

is equal to Dys is equal to 0, for any antisymmetric laminates. 

𝐴𝑥𝑠 = 𝐴𝑦𝑠 = 0

𝐷𝑥𝑠 = 𝐷𝑦𝑠 = 0
 

So, in antisymmetric laminate, there is no coupling between the bending and the twisting 

components.  Sometimes this coupling is desirable, sometimes this coupling is non 

desirable and accordingly we can design our laminates. So, that is what gives us 

tremendous design flexibility when we use a composite material. And then, if the laminate 

is cross ply and antisymmetric, like a laminate 0, 90, 0, 90, then the B matrix looks like 

this.  So, Bxx and Bxy, Bxx and Byy are opposite of each other and rest of the quantities are 

0, for antisymmetric cross ply laminate. 



[
𝐵𝑥𝑥 0 0

0 −𝐵𝑥𝑥 0
0 0 0

] 

 

And then we have 0 0 Bxs, 0 0 Bys and Bxs Bys 0 for antisymmetric angle ply laminate.   

[

0 0 𝐵𝑥𝑠

0 0 𝐵𝑦𝑠

𝐵𝑥𝑠 𝐵𝑦𝑠 0
] 

So, we know the transformation relation for each plies for theta and we know that in a 

laminate where I have balanced. There are thetas and minus thetas. So, according to we 

can look at the transformation, and after looking at the lamination sequence, we can just 

get these quantities whether they are 0 or not it can be easily shown.   
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Now, we will talk about one another type of laminate, and that is called quasi isotropic 

laminate.  So, in a quasi isotropic laminate, adjacent laminates are oriented at pi by n, where 

n is the number of laminates. 

An example can be a laminate which has orientation 60, minus 60, 0 symmetric.   

 

[60|−60|0]𝑠 



Now, in these laminates, the behavior of A is of isotropic nature, but B and D matrices are 

not.  So, if we look at the A matrix, it looks like this.  

[𝐴] = [

𝐴𝑥𝑥 𝐴𝑥𝑦 0

𝐴𝑥𝑦 𝐴𝑦𝑦 0

0 0 (𝐴𝑥𝑥 − 𝐴𝑦𝑦)/2
] 

So, this is how A of a quasi isotropic laminate looks like, and we have Axx is equal to Ayy 

here. So, this is more of an isotropic behavior.  So, A matrix is isotropic, but B and D are 

not. So, we saw how to relate the stress resultants with the strain components and then we 

defined matrices like A, B and D matrix. And we saw that depending on the lamination 

sequence, some of the couplings are there, some of the couplings are not there. And we get 

some special relations also in some cases like here, we have Axx is equal to Ayy and so on.  

So, these are quite useful observations and they are quite useful in designing a composite 

laminate.  

(Refer Slide Time: 37:10) 

 

So, with that I would conclude this lecture here.   

Thank you. 


