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Welcome to the second lecture of week 6.  

Today we will discuss about deriving the constitutive relations of composite ply with the help 

of rule of mixture-based homogenization. So we will use rule of homogenization for 

constitutive relation of composite ply using rule of mixture. Now if you want to do it, we have 

to make some assumptions. So there are some assumptions. These assumptions are (i) both 

fiber matrix are homogeneous and (ii) fiber matrix show linear elastic behavior and then we 

also assume that (iii) there is perfect bond between fiber matrix and (iv) ply which will also 

called lamina does not have residual stress. (v) We also assume that fibers are regularly 

spaced and perfectly aligned and also they are uniform. Now with these assumptions that 

make the situation somewhat ideal, we will derive all the relations.  
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So, our ply has both matrix and laminate. So if we assume that vf is the volume, sorry our ply 

have both matrix and fiber and if we assume that vf is the volume of fiber and vm is the 

volume of matrix volume of matrix and then we say that vc is vf plus vm which is the total 

volume of ply then we can define something like vf by vc which we call capital Vf which means 

this is fiber volume fraction and then similarly we can write vm by vc which we call Vm is 

matrix volume fraction and if we add Vm plus Vf this is vf plus vm by vc and we also we know 

that vc is also vf plus vm so it is 1. 

Now it is assumed that there is no void. If there is any void so accordingly there can be a void 

volume fraction also and then void volume fraction plus volume fraction of matrix and fiber 

that becomes 1. Similarly we can define weight wc as wm plus wf where this is wc is weight 

of ply and this is matrix weight and this is fiber weight and then using the same logic we can 

write the matrix weight fraction plus fiber weight fraction is 1. This is matrix weight fraction 

which is weight of matrix by weight of composite and this is fiber weight fraction which is 

weight of fiber by weight of composite.  

𝑣𝑐 = 𝑣𝑓 + 𝑣𝑚 

𝑣𝑓

𝑣𝑐
= 𝑉𝑓 

𝑣𝑚
𝑣𝑐

= 𝑉𝑚 

𝑉𝑚 + 𝑉𝑓 =
𝑣𝑓 + 𝑣𝑚

𝑣𝑐
= 1 

𝑤𝑐 = 𝑤𝑚 +𝑤𝑓 



𝑊𝑚 +𝑊𝑓 = 1 
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Now we can write that rho f into vf where rho f is the density of fiber plus rho m into vm 

which is density of matrix. We can write this as rho c into vc. Here rho c is density of ply and 

again this can be written as rho f vf plus rho m vm is equal to rho c. So the density of the ply 

is weighted combination of the density of matrix and density of fiber where the weights are 

the volume fractions. We can also write weight of composite by the density of composite 

which is the volume of the composite as weight of the matrix divided by the density of the 

matrix which is the volume of the matrix plus weight of the fiber, density of the fiber which is 

volume of the fiber. So from here we can directly show that the density of fiber can be written 

as weight fraction of fiber divided by fiber density plus weight fraction of the matrix divided 

by matrix density. 

Now if we have something called void volume fraction as vc, so this is volume of void. So if 

there is void then the density thus calculated is going to be more than the actual density 

because here we do not have any void and voids do not have weight. So this is we know the 

density that is got theoretically and experimentally if we get any less density then it becomes 

rho ct which means theoretically obtained density which is this minus rho ce which is 

experimentally obtained density divided by rho ct.  

𝜌𝑓𝑣𝑓 + 𝜌𝑚𝑣𝑚 = 𝜌𝑐𝑣𝑐 

𝜌𝑓𝑉𝑓 + 𝜌𝑚𝑉𝑚 = 𝜌𝑐  

𝑤𝑐
𝜌𝑐

=
𝑤𝑚
𝜌𝑚

+
𝑤𝑓

𝜌𝑓
 



𝜌𝑐 =
1

𝑤𝑓

𝜌𝑓
+

𝑤𝑚

𝜌𝑚

 

𝑉𝑣 =
𝑣𝑣
𝑣𝑐

 

𝑉𝑣 =
𝜌𝑐𝑡 − 𝜌𝑐𝑒

𝜌𝑐𝑡
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Now we will define the elastic properties. So let's talk about longitudinal elastic modulus. So 

our composite ply looks like this. We have plies oriented in some direction. Some theta its 

plies are oriented and our assumption is that they are aligned properly and spacing is 

uniform. So here we can talk about two axis one is let's define as x and y. So this is we can say 

it is a global axis and we can align one another axis. 

We can define another axis which we assume to be oriented along the fiber direction and let's 

call it axis one and let's call it axis two. Now one two is principle material direction or we call 

it principle axis. Now we will find out the properties of the plies in the principle axis. So along 

the principle axis we can make the same drawing as this. If we draw it along principle axis it 

will look like this. 

Now our goal is to find out the elastic modulus along direction one. So let's idealize and 

assume that all the fiber volume is concentrated on one side and the matrix is at the other 

side. This is just an assumption, idealization I would say for the sake of illustration. It has 

nothing to do with the physical picture it is just for the sake of illustration. We are showing 

that fiber is at the one side and matrix is at the other side. 



And let's assume that this entire lamina in the direction one is under a stress sigma one. So 

sigma one is applied along direction one and then under the action of this, this deforms and 

it deforms in this way. The deformed shape can look like this. The red dashed line shows the 

deformed shape. So what's happening here is because there is a perfect bond between matrix 

and fiber, so one is not going to slip over other. 

So they are always in contact which means that the longitudinal strain experienced by the 

fiber and matrix are same. So strains are same. So the total load carried out by the matrix and 

total load carried out by the fiber on being added would give me the total load carried by the 

ply. So we can write sigma 1f which means the sigma 1 in the fiber is equal to multiplied by 

the area of the fiber plus the area of this face, the area is normal to the one axis plus sigma m 

multiplied by area of the matrix is equal to sigma one multiplied by the total area of the matrix 

and fiber. So here sigma 1f means the stress at the fiber, sigma m means stress at the matrix 

and sigma 1 means the sigma 1 over the composite. 

Now stress are not different whatever the stress here whatever the stress here and they are 

just sigma 1. So sigma 1 is equal to sigma f is equal to sigma m. Now sigma 1f is E 1f multiplied 

by epsilon 1 and we are multiplying that with Af, sigma m means E m and that is multiplied 

with epsilon 1 and we are multiplying that with Am and then we have sigma 1 which is E one, 

E1 is equivalent elastic modulus of the ply that is multiplied with epsilon 1 into Am plus Af. 

So please understand the stress are different but the strains are same. Then E1 cancels from 

both side and we bring Am by Af in the denominator here and that gives us E 1f Vf plus Em 

Vm is equal E1. 

Because if we have Af divided by Am plus Af, it is the ratio of the fiber area divided by the 

total area and the other dimension is same. So it is the ratio of the volumes also and that is Vf. 

Similarly, Am by Am plus Af is equal to Vm. So that is our elastic modulus in the longitudinal 

direction of the composite in terms of the individual elastic modulus in the longitudinal 

direction of the matrix and fiber.  

𝜎1𝑓𝐴𝑓 + 𝜎𝑚𝐴𝑚 = 𝜎1(𝐴𝑚 + 𝐴𝑓) 

𝐸1𝑓𝜀1𝐴𝑓 + 𝐸𝑚𝜀1𝐴𝑚 = 𝐸1𝜀1(𝐴𝑓 + 𝐴𝑚) 

𝐸1𝑓𝑉𝑓 + 𝐸𝑚𝑉𝑚 = 𝐸1 

𝐴𝑓

𝐴𝑚 + 𝐴𝑓
= 𝑉𝑓 

𝐴𝑚
𝐴𝑚 + 𝐴𝑓

= 𝑉𝑚 
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Now given this expression if we want to see the variation of E1 with change in Ef, it would 

look something like this. So, this is our Vf it is increasing in this direction. This is Vf equal to 

one. So when V f equal to zero which means there is no fiber E one is just equal to E m and 

when Vf is equal to 1 which means there is no matrix, it is only fiber then E1 is equal to Ef and 

in between them, they are varying linearly. And also, if we look at the individual stress strain 

behavior of the matrix and fiber, it looks like this. The fiber behaves like this. 

It is a matrix, so the matrix behaves like this. The matrix does not break suddenly and then 

we have the fiber. Fiber has a much higher elastic modulus and it is brittle. It breaks all of a 

sudden. And the composite is somewhere in between, so the elastic modulus of the composite 

along one direction is between what we get for the fiber and for the matrix. So fiber is very 

stiff, matrix is relatively less stiff and the composite is in between so it is E1f, this is Em and 

this is E1.  
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Now we will talk about the same properties in the transverse direction. In the transverse 

direction so we look at the same idealized diagram when it is loaded in the transverse 

direction. We have fiber here, we have matrix here. It is loaded in sigma 2 direction. 

Stress is sigma 2. This is direction 1, this is direction 2. Now after deformation, this can look 

like this. So there is delta m which is displacement, I mean the elongation of the fiber matrix 

and then there is delta f and combining delta m and combining delta f, we get the total 

deformation. Now here the stress is same and strain is different. So, the total delta which is 

delta m plus delta f. 

Now delta m is the elongation in the matrix part in the transverse direction which can be 

written as strain in the matrix multiplied by the initial width so if we say bm is the dimension 

of the matrix part along 2 direction and bf if we say matrix of the dimension of the matrix 

along the 2 direction, so it is epsilon m multiplied by bm. It is epsilon f multiplied by bf and 

then we have delta is equal to epsilon 2 multiplied by the bm plus bf. Now epsilon 2 can be 

written as sigma 2 divided by E2. Sigma 2 is the stress along the second direction 2, E2 is the 

equivalent elastic modulus along direction 2, so bm plus bf epsilon 2m is again the strain 

stress along direction 2 which is same so epsilon 2 by Em and then we have bm and then 

epsilon 2 divided by E2f multiplied by bf. Now epsilon 2 is same everywhere so it cancels out. 

We have 1 by E2 is equal to Vm by Em plus Vf by E2f. So this is our relation for the elastic 

modulus along direction two in terms of the elastic modulus of the fiber along direction 2 and 

matrix elastic modulus. Now Em is generally used as Em prime where Em prime is Em by 1 

minus nu m square and it is for the incorporation due to fiber in the fiber direction of the 

matrix. So to incorporate the constraint due to the fiber in the fiber direction of the matrix. 

Em is often modified to be Em prime and used in the formula. So this is what we get when we 

use this kind of strength of material based approach using rule of mixture to get the relation. 



𝛿 = 𝛿𝑚 + 𝛿𝑓  

𝜀2(𝑏𝑚 + 𝑏𝑓) = 𝜀2𝑚𝑏𝑚 + 𝜀2𝑓𝑏𝑓 

𝜎2
𝐸2
(𝑏𝑚 + 𝑏𝑓) =

𝜎2
𝐸𝑚

𝑏𝑚 +
𝜎2
𝐸2𝑓

𝑏𝑓 

1

𝐸2
=
𝑉𝑚
𝐸𝑚

+
𝑉𝑓

𝐸2𝑓
 

𝐸𝑚 =
𝐸𝑚

1 − 𝛾𝑚
2
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Now Halpin and Tsai they proposed a formula E2 is equal to Em multiplied by 1 plus xi1 eta 

1 Vf by 1 minus eta 1 into Vf where eta 1 is equal to E2f minus Em divided by E2f plus xi 1 

plus Em. So xi 1 is called reinforcing efficiency which is generally xi 1 ranges from 1 to 2. So, 

through experiment, we can try to fit the formula and find out what is our xi 1 and then 

whatever the xi one is used we can use the same xi 1 for this material for this ply material. 

Now if we look at the variation of the transverse elastic modulus of the ply with Vf the plot 

would look like this. 

So here the variation is not linear again the same thing. This is Vf equal to 1. So, when Vf equal 

to 1, the entire ply has only fiber. So, elastic modulus is just E2f and when Vf equal to only 

matrix, the elastic modulus is just Em.  

𝐸2 = 𝐸𝑚
1 + 𝜉1𝜂1𝑉𝑓

1 − 𝜂1𝑉𝑓
 



𝜂1 =
𝐸2𝑓 − 𝐸𝑚

𝐸2𝑓 + 𝜉1𝐸𝑚
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Now we will find out in-plane shear modulus. Now to find out in-plane shear modulus again, 

let us assume our ply is loaded in shear. So we have shear tau 12 and we have the fiber part 

here and the matrix part here. Now due to this kind of shear the deformation would look like 

this. Now this is delta m plus delta f due to shear and this is our delta m and this extra portion 

is delta f and that is the result of shear and also we have this as our dimension of the fiber 

part along the second direction. This is the dimension of the matrix along second direction. 

This is direction 1. This is direction 2. So again we can write that delta is equal to delta m plus 

delta f. Now this delta m is nothing but the shear strain in the matrix part multiplied by this 

dimension bf. Similarly delta f is the shear strain in the fiber part multiplied by this dimension 

bf. So, delta m is shear-strain in the matrix which we can write as gamma 12m and then that 

is multiplied with bm. 

Similarly this is gamma 12f and this is multiplied with bf and delta is the equivalent shear if I 

just join this point to this point, the line that I get that shows some angle here and that is going 

to give me. So, this angle is our equivalent shear gamma 12 and that multiplied by bm plus bf. 

Now equivalent shear gamma 12 can be written as the applied tau 12 divided by equivalent 

shear modulus G 12 and then we have bm plus bf and gamma 12 is again tau 12 that is applied. 

So stress is same throughout and that is divided by Gm multiplied by bm then we have tau 12 

by G 12f multiplied by bf and finally after cancelling out tau 12 and bringing bm plus bf in the 

denominator here, we write Vm by Gm plus Vf by G 12f and again the relation would also look 

same as that that we saw for the transverse modulus case. So, if we plot Vf here and if we plot 



G 12 here, the relation would look like this. So here we have G m. In this side, we have G 12f 

and this is Vf equal to one. This is zero.  

𝛿 = 𝛿𝑚 + 𝛿𝑓  

𝛾12(𝑏𝑚 + 𝑏𝑓) = 𝛾12𝑚𝑏𝑚 + 𝛾12𝑓𝑏𝑓 

𝜏12
𝐺12

(𝑏𝑚 + 𝑏𝑓) =
𝜏12
𝐺𝑚

𝑏𝑚 +
𝜏12
𝐺12𝑓

𝑏𝑓 

1

𝐺12
=
𝑉𝑚
𝐺𝑚

+
𝑉𝑓

𝐺12𝑓
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Now there is a equation by Halpin and Tsai for this case also and as per that equation it is Gm 

multiplied by in the denominator 1 plus Tsai two eta 2 Vf then divided by 1 minus eta 2 Vf 

where eta 2 is G 12f minus Gm divided by G 12f plus Tsai 2 Gm. So again we can 

experimentally find out Tsai 2 and we can fit the equation and we can use the same equation. 

Now this brings us to the end of this lecture. 

𝐺12 = 𝐺𝑚
1 + 𝜉2𝜂2𝑉𝑓

1 − 𝜂2𝑉𝑓
 

𝜂2 =
𝐺12𝑓 − 𝐺𝑚

𝐺12𝑓 + 𝜉2𝐺𝑚
 

We will continue from here in the next lecture.  



Thank you. 


