
Smart Structures 

Professor Mohammed Rabius Sunny 

Department of Aerospace Engineering 

Indian Institute of Technology, Kharagpur 

Week 05 

Lecture No: 28 

Energy Harvesting and Vibration Control (continued) 

Part 04 

 

In the last lecture, we looked into the mathematical formulation of a beam with 

piezoelectric patches for energy harvesting applications.  And we followed a paper for that.   

Today we will look into the same formulation, but from a different perspective. We will 

start with the governing differential equations and we do the formulation. So, in the 

previous lecture, we did it by starting from the Hamilton's principle and there, we put the 

approximations.   Here we will start with from the governing differential equation and we 

will do it. And after that, we look into the vibration control applications. 

So, the governing equations in general for a 3D case as, we have seen that is this.  Sigma i 

j comma i plus Bj, which is a body force is equal to rho uj double dot and the other 

differential equation for the electrical domain is the Gauss law.  

𝜎𝑖𝑗,𝑖 + 𝐵𝑗 = 𝜌𝑢̈𝑗 

𝐷𝑖,𝑖 = 0 

Now, if we again have our beam under consideration and if we have x as the axial 

dimension z as the vertical dimension and y is the other out of plane dimension.  So, let us 

consider this and with Euler Bernoulli assumption and piezoelectric effect, under Euler 

Bernoulli assumption and considering piezoelectric effect, the linear momentum equation 

becomes this. 

The corresponding governing differential equation is m b w double dot, plus del 2 w by del 

x 2 of EItotal, del 2 by del x 2 of EItotal, del 2 w by del x 2 minus pz minus del 2 Mp by del x 

2.   

𝑚𝑏𝑤̈ +
𝜕2

𝜕𝑥2
(𝐸𝐼𝑡𝑜𝑡

𝜕2𝑤

𝜕𝑥2
) − 𝑝𝑧 −

𝜕2𝑀𝑝

𝜕𝑥2
= 0 

So, we are very familiar with this equation. We already derived it.  And for the other 

equation, is just this, the Gauss law is just this.   

𝐷𝑧,𝑧 = 0 



Considering the fact that this piezoelectric patches are polarized in z direction, and so all 

the electric field voltage is in the z direction. Electrical displacement in z direction.  So, 

these are the two equations now that we have to use to form the final energy harvesting 

equation. And here we will follow the notations that we were using in the strain induced 

actuation problems. So, in the previous lecture, we use the notations that was in the paper, 

but here, we have come back to the notations that we are using in the induced strain 

actuation problems. So, let us assume w as, as we have assumed phi wj q wj and the electric 

field was assumed to be -  let us assume the electric field.  So, Ez is equal to V, the voltage, 

which is a function of time, multiplied by psi. Psi is a function of z, and here q w j is also 

function of time. 

So, we will make these assumptions and then we will go to the derivation. So, our approach 

is to multiply the first equation by phi wj.  So, if we do it.  

𝑤 =∑𝜙𝑤𝑗𝑞𝑤𝑗(𝑡)𝐸𝑧

𝑁

𝑗=1

= 𝑣(𝑡)𝜓(𝑧) 

So, let us multiplied by phi wi. Let us take i as the index, and then it is -  we are just 

multiplying phi w i with the first equation and in the first equation, we put these 

approximations and we integrate it from 0 to L. 

∫𝜙𝑤𝑖 (𝑚𝑏𝑤̈ +
𝜕2

𝜕𝑥2
(𝐸𝐼𝑡𝑜𝑡

𝜕2𝑤

𝜕𝑥2
) − 𝑝𝑧 −

𝜕2𝑀𝑝

𝜕𝑥2
)𝑑𝑥

𝐿

0

 

And Mp is as we know as for the definition Mp is the area integral of minus z into elastic 

modulus multiplied by the free strain. And free strain, as we know that, it is d31 multiplied 

by electric field Ez or E3, whatever, Ez is equal to E3. And we have already assumed Ez as 

this.   

𝑀𝑝 = ∫−𝑧𝐸𝜀𝑝𝑑𝐴

 

𝐴

= ∫−𝑧𝐸𝑑31𝐸𝑧𝑑𝐴

 

𝐴

               and             𝐸𝑧 = 𝐸3 

So, finally, after putting this - after putting these approximations and following the 

procedure that we have followed; finally, this gives equation in this form. So, we have 

already seen how to derive the set of ordinary differential equations. From this kind of 

equations, it needs some shifting of derivatives also, which we have to do.  And finally, if 

we do all these things these equations come -   is equal to F.   

[𝑀]{𝑞̈} + [𝐾]{𝑞} − [Θ]{𝑣} = {𝐹} 

So, here, Mij is (can put qw), Mij is mb, phi wi, phi wj dx which is equal to Msij plus Mpij, as 

per the paper discussed.  So, as per the paper discussed.  



𝑀𝑖𝑗 = ∫𝑚𝑏

𝐿

0

𝜙𝑤𝑖𝜙𝑤𝑗𝑑𝑥 = 𝑀𝑠𝑖𝑗
+𝑀𝑝𝑖𝑗
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And then we have Kij is equal to EItotal, and which is equal to Ksij plus Kpij, as per the paper. 

So, we are just showing the equivalence between the expressions using the two different 

formulations and notations.   

𝐾𝑖𝑗 = ∫𝐸𝐼𝑡𝑜𝑡

𝐿

0

𝜙𝑤𝑖,𝑥𝑥𝜙𝑤𝑗,𝑥𝑥𝑑𝑥 = 𝐾𝑠𝑖𝑗 + 𝐾𝑝𝑖𝑗 

And we have theta i, which is minus 0 to L A z psi d31 Young's modulus multiplied by phi 

i comma x x dA dx.  Now, please understand d31 multiplied by E, gives us E31. So, this is 

phi. So, we are using phi here itself and Fi is 0 to L phi wi pz dx. 

Θ𝑖 = −∫∫𝑧𝜓𝑑31𝐸𝜙𝑖,𝑥𝑥𝑑𝑥

 

𝐴

𝐿

0

 

F𝑖 = −∫𝜙𝑤𝑖𝑝𝑍𝑑𝑥

𝐿

0

 



Now, here, by assuming pz to be a distributed function of x, it is written in this way. While 

discussing the paper, we saw that those forces were considered to be discrete. So, that is 

why they were summed over.  

So, that is about the first equation.  In the second equation, which is D z z equal to 0, we 

multiply psi, and then have V and then, from there we can show that this becomes q 

multiplied by -   So, q let us put capital Q as charge. So, capital Q is equal to charge because 

we are using small q to denote the coefficient associated with the displacement 

components.  So, it is ds plus V Dz psi multiplied by v, and then dV. 

So, now, this term can be written as -  we can sum it over. So, we can write phi wj comma 

x x q wj plus e 3.  So, electric field. So, which is psi multiplied by v  and that multiplied by 

epsilon 3 3.  So, here to multiply e here, e 3 1, and this is epsilon. This multiplied by psi 

dV plus Q multiplied by psi ds.  

So, this gives us the equation as Theta T, multiplied by qw plus Cp, Cp is just one value 

here.  So, we can - we may just write it as Cp.  Cp v plus Q is equal to 0. Phi T, we have 

already defined. 

Cp comes to be volume integral of epsilon 3 3, epsilon sigma square dV.  So, we have got 

these two equations.  From the first equation, which was a version of the linear momentum 

equation, we got this. From the first equation which was a version of the linear momentum 

equation,  we got this equation and the from the second equation, which is gauss law,  we 

got this equation.  And these two equations are equivalent to the equations that we got in 

the last lecture while discussing the paper in a different type of formulation. 
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Now, we look into vibration control applications and the corresponding mathematical 

analysis. For that, this paper by Gordon Gee and his co-authors can be referred to. Here the 

idea is that we have a piezoelectric beam, sorry a beam  which has piezoelectric patches 

for sensing and actuation. So, it has two piezoelectric patches at the top and bottom. The 

first top one is used as actuator and the bottom one is used as sensor. 

Now, it is not needed that the actuator and sensor has to be placed back to back, they can 

be placed at other locations also, depending on the control strategy. Now, from the 

piezoelectric sensor -   so this structure is under some dynamic load. So, in the experiments, 

the dynamic load can be given by a shaker or anything. In real life, it is due to the external 

factors. So, it is under some dynamic load and then -  so we can just show some loads here. 

We can denote this as pz.  Now, from the sensor, the charge output comes, and then, there 

are two modes as suggested by this paper. One is the charge amplifier mode; through which 

we get voltage from the charge. So, voltage output from the charge. So, it can be a charge 

amplifier, or there can be current to voltage converter. 

So, we will talk about it, what it is? Then from this, the voltage output comes and then, it 

is multiplied by a multiplied by a gain. We can call it controller and then finally, from there 

a feedback voltage is given here, which we may call v voltage.  Now, the from here, the 

charge or current comes here.  The output of this charge amplifier or current to voltage 

converter is a voltage. This voltage when it goes to the controller, it is multiplied by a gain 

and then the final voltage comes here which actuates the actuator.   

Now, if you are interested in the details of this charge amplifier or current to voltage 

converter, this paper can be referred.  The circuit diagrams are given there.   



Now, if we write this, write the dynamics of this, then from there, the charge can be written 

as - charge output from sensor is Q which is equal to Dz integrated over the area.   So, we 

have the electrical displacement Dz here. Let us call this as x, this dimension as z and this, 

let us call this as y. So, the same convention that we have been using. So, the Dz here, and 

it is already normal to the -  it is already oriented along the z axis which means it is already 

normal to the xy plane. So, Dz integrated over the area that gives us the charge output Q.  

Now, the charge output Q is e31 of the piezoelectric material multiplied by the strain. So, 

the strain there - so, the strain here is nothing, but epsilon 0 minus z into kappa, as we 

know, now, epsilon 0. So, strain is equal to epsilon 0 minus z into kappa.  So, epsilon 0 

comes here, z for this case is this and we have to multiply kappa here and kappa comes 

here.   

𝑄 = ∫𝐷𝑧𝑑𝐴

 

𝐴

= ∫𝜀31 (𝜀0 + (
𝑡𝑏
2
+ 𝑡𝑐𝑠) 𝜅) 𝑑𝐴

 

𝐴

 

𝜀 = 𝜀0 − 𝑧𝜅 

Now, the thickness of the host beam is tb and we can call the thickness of the piezoelectric 

patch which is used as actuator to be tA, and the thickness of the piezoelectric patch which 

is used as sensor to be tcs, s stands for sensor, A stands for actuator.  Now, with this, we 

can rewrite this expression as – integral from x0 to x0 plus lc. And again, if you want, we 

can call this as x0 as we have been calling and this dimension it is better to show in a 

different color just to avoid confusion. This dimension is x0 plus lc.  So, we are assuming 

that the length of the sensor and actuator same. Again, that is not a requirement they can 

be different as well.  So, we are assuming lc, that lcs is equal to lcA is equal to lc, but that is 

not a requirement, they can be different as well. 

Now, we also know that in our analysis, we have been assumed u0 x t to be summation of 

j is equal to 1 to M multiplied by phi uj into q uj, and w as N phi wj q wj.  

𝑢0(𝑥, 𝑡) =∑𝜙𝑢𝑗𝑞𝑢𝑗

𝑀

𝑗=1

 

𝑤(𝑥, 𝑡) =∑𝜙𝑤𝑗𝑞𝑤𝑗

𝑁

𝑗=1

 

So, with that approximation, this expression can be written as - e31 multiplied by bs, bs is 

the width of the sensor and then, we multiply this row vector phi u 1 x to phi u M x and 

then we have tb plus tcs, q w 1 x double dot, sorry, w comma x x plus tb by 2 plus tcs. and 

this entire row vector is multiplied by the column vector and dx.  



𝑄

= ∫ 𝑒31𝑏𝑠 {𝜙𝑢1,𝑥 ⋯ 𝜙𝑢𝑀,𝑥 (
𝑡𝑏
2
+ 𝑡𝑐𝑠)𝜙𝑤1,𝑥𝑥 ⋯ (

𝑡𝑏
2
+
𝑡𝑐𝑠
2
)𝜙𝑤𝑀,𝑥𝑥}

𝑥0+𝑙𝑐

𝑥0

{
 
 

 
 
𝑞𝑤1
⋮

𝑞𝑤𝑀
𝑞𝑤1
⋮
𝑞𝑤𝑁}

 
 

 
 

𝑑𝑥 

So, what we are doing is - if I multiply this q vector with this row vector, that gives me this 

expression.  

Now, we can write this entire expression as AT multiplied by q. q is this column vector and 

AT is this vector multiplied by bs into e31 and integrated from x0 to x0 plus lc.  So, here AT 

is of size 1 multiplied by M plus N. And q is of size M plus N by 1.  

𝑄 = {𝐴}1 x (𝑀+𝑁)
𝑇 {𝑞}(𝑀+𝑁) x 1 

So, again just to summarize what we have done here is -  we need the expression for charge 

from the sensor.  So, the charge is surface integral of the dz and dz is e31 multiplied by the 

strain. So, e31 and the strain expression is here in terms of epsilon 0 and kappa. And epsilon 

0 and kappa comes in terms of the derivatives of this phi u and phi w. Here, this is not q, 

this is phi.  And when this vector, after being multiplied with bs and e31 integrated along 

the length of the sensor, it gives me a vector called A.   

Now, we have to write the expression for the voltage that we get from the charge amplifier.  
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If you want the voltage from the charge amplifier, from the charge amplifier the voltage 

that we get is VA is equal to 1 by Cf multiplied by Q, where Cf is capacitance of the or we 

can call feedback capacitance of the charge amplifier. And then, this expression can be 

written as 1 by Cf multiplied by the A vector multiplied by the q vector.  

𝑉𝐴 =
1

𝐶𝑓
𝑄 =

1

𝐶𝑓
{𝐴}𝑇{𝑞} 

So, the input voltage to actuator can be written as -  v is equal to, we multiply by some 

gain, GA with the VA.  So, it is GA by Cf  A
T q.  

𝑣 = 𝐺𝐴𝑉𝐴 =
𝐺𝐴
𝐶𝑓
{𝐴}𝑇{𝑞} 

And current to voltage converter, for that the voltage: let us write it as may be Vc is Rcv 

multiplied by Q. So, R is a resistance. If we look at that structure diagram of the current to 

voltage converter, the position of R is there. So, R is multiplied by Q dot. Q dot is the 

current.  So, that being multiplied with the resistance gives us the output voltage  from the 

current to voltage converter.  So, that is equal to 1 by Cf multiplied by AT into q dot. 

𝑉𝑐 = 𝑅𝑐𝑣𝑄̇ =
1

𝐶𝑓
{𝐴}𝑇{𝑞̇} 

And again, input voltage to actuator is v is equal to, let me call it -    there is another gain. 

So, let us call it may be GV multiplied by Vc.   So, we can call it Gc also. So, it becomes Gc 

(it is not Rc, Rcv), so, Gc multiplied by Rcv A
T q dot.  

𝑣 = 𝐺𝑐𝑉𝑐 = 𝐺𝑐𝑅𝑐𝑣{𝐴}
𝑇{𝑞̇} 

So, what happens is - the charge amplifier gives an output which is our VA or Vc and 

accordingly the controller multiplies with GA or Gc, and the product of it is the feedback 

voltage V that comes to the actuator. 
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Now, we know that for the actuation case, we have already seen that the dynamics can be 

written as this. And that is equal to x0, x0 plus lc, B
T, NP, MP.  And here, BT is already 

known to us and this is multiplied by NP. And then it is integrated over the domain of the 

piezoelectric actuator, I mean, the domain along the x axis and that gives me the actuation 

force. 

[𝑀]{𝑞̈} + [𝐶]{𝑞̇} + [𝐾]{𝑞} = ∫ [𝐵]𝑇 {
𝑁𝑃
𝑀𝑃
} 𝑑𝑥

𝑥0+𝑙𝑐

𝑥0

= [𝐵𝐼]{𝑆}𝑣 

And then we can write this entire thing as BI.  So, we are calling it BI means, this B matrix 

integrated over x0 to x0 plus lc.  So, BI multiplied by a vector S, we are introducing a new 

vector S into the actuation voltage v.  So, S is a vector which is required to convert the 

voltage v to NP and MP.  So, NP and MP is a vector S which, on being multiplied with v 

gives me the NP and MP.  So, S can be written in terms of tcA, the width of the actuator bA 

and the beam thickness tb and the elastic modulus of the piezoelectric patch and d31 or we 

can write e31 also. So, in terms of those, this can be written -  the S vector can be found.   

So, we have now this and then, we can rewrite the expression as Mq double dot plus C 

multiplied by q dot plus K q.  And then we have, the BI, we have S, and then, we have the 

gains GA divided by Cf multiplied by A transpose, multiplied by q.   

[𝑀]{𝑞̈} + [𝐶]{𝑞̇} + [𝐾]{𝑞} = [𝐵𝐼](𝑀+𝑁)𝑥2{𝑆}2𝑥1
𝐺𝐴
𝐶𝑓
[𝐴]𝑇1+(𝑀+𝑁){𝑞}(𝑀+𝑁)𝑥1 



Now, this is for we will do that.  Now again, this entire expression can be written as -  LA 

multiplied by q, because we know that, this is M plus N over q, S is 2 by 1, this is 1 by M 

plus N, and this is M plus N by 1. So, finally, this comes to be M plus N over M plus N 

and this we know it is M plus N over 1.  

[𝑀]{𝑞̈} + [𝐶]{𝑞̇} + [𝐾]{𝑞} = [𝐿𝐴](𝑀+𝑁)𝑥(𝑀+𝑁){𝑞}(𝑀+𝑁)𝑥1 

Now, this is charge amplifier mode. Now, when for current to voltage mode, the same 

expression for current to voltage mode it becomes - this becomes LC over q dot.  And where 

LC is BI over S, then we have Gc Rcv, we already defined -  Gc Rcv, and we have A transpose.   

[𝐿𝑐] = [𝐵𝐼]{𝑆}𝐺𝑐𝑅𝑐𝑣[𝐴]
𝑇 

So, for the charge amplifier mode, we have Q here and for current to voltage mode we have 

q dot here. So, we can see depending on the control strategy whether we used charge 

amplifier mode or current to voltage mode, we have q or q dot here. And the gains are 

decided depending on - I mean, it is a matter of control system. So, we used various 

techniques,  various optimizations to find out the optimal gain. So that this entire system 

can be controlled. 

Now, in real life, there can be unwanted vibration due to several reasons, aero elastic 

instability for aircrafts can be one of the reasons. So, if it goes to the unstable region, 

dynamically unstable region, flutter can occur and the vibration may look like this.  In such 

cases if this kind of controls are applied, then the vibration can be stabilized.  

(Refer Slide Time: 36:47) 

 



So, we have discussed about the energy harvesting and the control systems based on the 

formulations that we have been doing so far.   

Now with that let me conclude this lecture.  

Thank you. 


