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In this lecture, we will discuss the analysis of a beam with piezoelectric patches for energy 

harvesting applications.  The objective is to harvest energy from ambient vibrations using 

piezoelectric material.  The applications are charging sensors that are placed in remote 

environments.  So, these sensors are generally requiring low power.  So, the amount of 

power is not a problem, but the problem is changing the power supply for them.  For 

example, if you think of a structural health monitoring applications of a bridge structure or 

any other structure. 

Now, the sensors may be embedded somewhere and those locations may not be always 

accessible.  So, to change the batteries that powers the sensors is not an easy job and doing 

it regularly is not something very desirable. Similarly, a GPS tracking device that also 

works at a remote location.  So, if instead of having to change the batteries, if it is possible 

to harvest energy from the vibration of the structure on which it is mounted, then it becomes 

independent of any external power requirement. 

So, that is the motivation of doing this kind of works. So, with this motivation several 

amount of research work has been done considering various type of structures.  Here, we 

will very closely follow this research paper by Sodano, Park and Inman, Estimation of 

Electric Charge Output for Piezoelectric Energy Harvesting.  And also, we will look at 

another paper from the same research group and Electro-mechanical finite element model 

for Piezoelectric Energy Harvester plates. And apart from that this book Piezoelectric 

Energy Harvesting by Atak and Inman is going to be helpful. So, we will follow the 

formulation that is laid out in this paper and also, we will see how the formulation looks 

when we look at the notations or the analysis methodology that we use. 

(Refer Slide Time: 3:38) 



 

Now, we have seen that the virtual work equation looks like this considering the 

piezoelectric energy effect.  

∫ 𝜎𝑖𝑗𝛿𝜀𝑖𝑗𝑑𝑣

 

𝑉

− ∫ 𝐷𝑖𝛿𝜀𝑖𝑑𝑣

 

𝑉

− ∫ 𝑓𝑖𝛿𝑢𝑖𝑑𝑠

 

𝑆

− ∫ 𝑄𝛿𝑣𝑑𝑠

 

𝑆

= 0 

So, this equation we derived and so far, we have solved only the induced strain actuation 

problems. In those kinds of problems, the electric field and the potential are known to us.  

So, their variation is 0. And also, in those problems because electric field potentials are 

known to us.  So, the only unknowns that we need to solve are the mechanical response. 

So, that is why this minus this would suffice and we would not have this.  But when we 

want to do energy harvesting application in that case the structure is vibrating because of 

external load and we need to see how is the electrical response.  So, the electrical response 

is something that is not known to us.  So, del of variation of electric field or the variation 

of voltage is non-zero there and they are unknowns.  So, that is why in that case we need 

to have the entire equation in the formulation. 
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Now here the structure that is considered is similar to what we have been considering so 

far.  So, there is a beam and there are piezoelectric patches at top and bottom and then it is 

under some kind of load.  So, it is vibrating. Now for this case, it is a case of dynamic 

problem.  So, the variation indicator comes from the Hamilton's principle and it looks like 

this. We have already discussed that.  

Now, if we go by our notation then this is delta T, delta U remains same we have also use 

delta U and this is delta Wₑ.  Now, potential energy or to be specific strain energy can be 

written as half integral over the volume of the host structure. So, here S denotes host 

structure and P denotes piezoelectric component.  So, half into ST into T integrated over 

the volume of the host structure.  Now here S means strain vector. 

Now, here vector has been denoted with this line at below the variable and T is stress 

vector.  So, we have used epsilon and sigma here they are using S and T.  And similarly, 

the same thing for the piezoelectric domain minus ET D.  So, E here is electric field. So, 

we are using double stroke E for that and D is the electrical displacement and that is valid 

only in the piezoelectric domain. So, here the ah integrals are written separately for the 

piezoelectric part and the host structure part.  

Kinetic energy can be written as this.  So, rho s is the density of the host structure and host 

structure material and rho p is the density of the piezoelectric material. u is vector of 

displacement components.  So, we can write maybe u1, u2, u3, for our case generally we 

denote u3 as w and we do not have this out of plane displacement for the beam. But here to 

be more generic. Everything has been written in terms of the vector and matrix form. Later 

on, the Euler Bernoulli beam assumption has been applied and things have been reduced.   
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External work is this.  So, this is the external work due to the applied load and this part 

comes from this boundary integral.  So, we have charge multiplied by variation of the 

potential and that is what comes here.  So, we have all the terms that should be there in the 

Hamilton's principal equation. 
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Now comes the constitutive relations. So, we have we have stress and electrical 

displacement at this side and the states are strain and electric field.  cE we know, E we 

know. Here this epsilon is this for us, epsilon and this is c with a superscript of electric 

field.  So, this is how we defined the constitutive relations when stress and, sorry, strain 

and electric field were the state variables. And we also know what are these piezoelectric 

coefficients E in terms of the D coefficients. 

Now, if all these material properties are substituted, then the potential energy expression 

looks like this.  So, here we have cS because T is equal to cS multiplied by – because T is 

equal to cS multiplied by S that is the stress and here cS means the stiffness coefficients for 

the host structure. cE is this. So, if you put the stress expression as cE multiplied by S minus 

eT multiplied by E, then we get this term minus this term. And then, we have the term for 

the electrical part which is this. So, this should be minus here and this. Now we need to 

take the variation of the total potential energy. 

So, if the variation is taken, then it looks like this.  Delta sT cE S dVP minus VP delta sT eT 

E dVP minus variation of ET e S dVP minus again integral over the VP. Variation of ET 

epsilonS E dVP. So, this is the variation of the total strain energy.  

𝛿𝑈 = ∫ 𝛿𝑠𝑇𝑐𝑠𝑆𝑑𝑉𝑠

 

𝑉𝑃

+ ∫ 𝛿𝑠𝑇𝑐𝐸𝑆𝑑𝑉𝑃

 

𝑉𝑃

− ∫ 𝛿𝑠𝑇𝑒𝑇𝐸𝑑𝑉𝑃

 

𝑉𝑃

− ∫ 𝛿𝐸𝑇𝑒𝑆𝑑𝑉𝑃

 

𝑉𝑃

− ∫ 𝛿𝐸𝑇𝜀𝑇𝐸𝑑𝑉𝑃

 

𝑉𝑃
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Kinetic energy is this.  So, again if the variation of the kinetic energy is taken. So, delta KE 

that so there should be half everywhere and this becomes – this becomes rho S then delta 

u dot T u dot dVS plus again the same thing, but for the piezoelectric domain dVP.  

𝛿𝐾𝐸 = ∫ 𝜌𝑆𝛿𝑢̇𝑇𝑢̇𝑑𝑉𝑆

 

𝑉𝑆

+ ∫ 𝜌𝑃𝛿𝑢̇𝑇𝑢̇𝑑𝑉𝑃

 

𝑉𝑃

 

So, finally, after substituting everything the variational indicator looks like this.  So, here 

we have the variation of the kinetic energy and then we have the variation of the total 

potential energy which has the strain energy and the potential energy of the electrical part.  

And then we have the terms which are equivalent to the force multiplied by the 

displacement terms. So, here is the force multiplied by the displacement and here we have 

the charge multiplied by the variation of the electrical potential. 
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Now, we will put the approximations, kinematic approximations in the expression. So, it 

is a Euler Bernoulli beam. So, it follows this relation – strain is equal to minus y multiplied 

by second order derivative of the displacement along z direction. Now this is how the 

structure looks like. It is spanning along x direction and as per this convention, the vertical 

dimension is y. And the only non zero displacement component is u which is displacement 

along y. 

So, in our previous formulations, we wrote w as the displacement along the vertical 

direction, but here just to be consistent with the terminologies used in the paper, we are 

writing as per them. So, it is u.  So, minus y del 2 u by del x 2 is the strain and this is the 



strain in the x direction, normal strain in the x direction and that is the only non zero strain.  

And then this vertical displacement is written as a summation of the product of this known 

function and the unknown coefficient.  So, these known functions have been the vibrational 

modes of the beam has been considered as the known functions here. And as we know that 

they should satisfy some boundary conditions and those beam mode shapes satisfy those 

boundary conditions.  So, that is why they have been taken as this.  Now with this 

approximation the same expression looks like this.  So, phi has been differentiated twice 

with respect to s and then r has come.   

Now the piezoelectric potential across the PZT element is constant. So, the electric 

potential, I mean the electric field has been written in terms of electrical potential as this. 

So, electric field is equal to some known function of y which is psi y multiplied by v t.  

Now, we know that the electrical potential here is constant, here is constant, and here it is 

0.  And we also know that because it is a beam, so, if I have plus minus here, I would have 

plus minus here. Or if I have minus here, plus here, I am going to have plus here, minus 

here.  So, this psi is minus v by tp at the top. Here it is 0 because it is inert beam and here, 

it is just the opposite v by tp.  And this variation is written as psi y as a function.   
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So, these are the approximations.   

Now our job is to put the approximations in the variation indicator and they have been put 

here. Now after they are put, here also it has to be plus, and after they are put, it looks like 

this.  Then we can see here that there are variations of r dot, r, r, and v.  Now, after doing 

integration pi parts, we know that this r dot terms goes away and r double dot, I mean this 



dot goes away, and r double dot comes here.  So, it also becomes delta r and then we 

separate out all the terms multiplied by delta r and the terms multiplied by delta v and that 

gives us two sets of equations.  But before doing that let us write these coefficients, their 

values. 

So, Ms is equal to Vs rho s, phi t and phi dVs. Mp is same thing rho p, phi t, phi dVp. And 

then, we have Ks, which is again integral over Vs y square phi prime transpose multiplied 

by phi prime and we have cs dVs. So, we have only one stress component, one strain 

component.  So, cs is nothing but elastic modulus along the x direction and we know that 

the beam is isotropic. So, it is just the elastic modulus. Kp is same thing for the piezo 

domain cp dVp. And then, we have this coupling term phi, and phi is minus integral over 

Vp of y, phi prime transpose eT, psi dVp. And then, we have another term cp, cp is integral 

over Vp of psi transpose, psi multiplied by epsilon s dVp. 

𝑀𝑠 = ∫ 𝜌𝑆𝜙𝑇𝜙𝑑𝑉𝑆

 

𝑉𝑆

                       𝑀𝑃 = ∫ 𝜌𝑃𝜙𝑇𝜙𝑑𝑉𝑃

 

𝑉𝑃

 

𝐾𝑠 = ∫ 𝑦2𝜙"𝑇𝜙"𝑐𝑆𝑑𝑉𝑆

 

𝑉𝑆

                       𝑀𝑃 = ∫ 𝑦2𝜙"𝑇𝜙"𝑐𝑃𝑑𝑉𝑃

 

𝑉𝑃

 

Θ = − ∫ 𝑦𝜙"𝑇𝑒𝑇𝜓𝑑𝑉𝑃

 

𝑉𝑃

                       𝐶𝑃 = ∫ 𝜓𝑇𝜓𝜀𝑆𝑑𝑉𝑃

 

𝑉𝑃
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So, these are the matrices that we found out and then we separate out the terms which has 

variation of r and variation of v and that gives us two equations of two equations.  

This is the first equation this is the second equation.  Now here we can do two things, we 

can write it in this equation in the form of this charge q or we can write this equation in the 

form of voltage v. If you want to write it in the form of charge q, all we can do is we can 

write v as R q dot, because what is happening is this piezoelectric is connected to a 

resistance and that resistance is dissipating some energy.  So, we know that the voltage 

across this is equal to R q dot.  In fact, this R is the parallel combination of the load 

resistance RL. So, the external resistance that we put is load resistance and the piezo has a 

resistance which we may like to call Rp. So, R is parallel combination of Rp and RL. So, we 

know that 1 by R is equal to 1 by 1 Rp plus 1 by RL, and that gives us R. So, this is the R 

using which we can express v in terms of q dot. And then, in the first equation which 

signifies the mechanical motion we do not have any damping, but structures are supposed 

to have damping as we discussed before also. And we also discussed that the damping is 

generally written as a linear combination of the mass matrix and stiffness matrix, alpha into 

mass matrix plus beta into the stiffness matrix and these are called Rayleigh damping 

coefficients. And if we know the damping factors they can be found out. So, this is how 

they are related the damping factor the natural frequencies and the Rayleigh damping 

coefficients.  
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So, incorporating the damping, the first equation looks like this, and incorporating v in 

terms of q dot, the second equation looks like this. So, these are the two equations which 

can be solved and that will give us the variation of the displacement and the electrical 



charge. And if we know the electrical charge, we can find out electrical current also. 

Electrical current is nothing, but I equal to q dot. So, we can find out the variation of the 

displacement charge or current with time.  Now here this q dot term which is multiplied 

with R, so this R and this C what they are doing as they are acting as a damper and they 

are taking out energy from the system.  

Now this system can be tuned for maximum energy harvesting by tuning R. So, by tuning 

the load resistance, we can tune R and accordingly we can tune the system for the maximum 

amount of energy harvesting. Now we said that we could have written this expression in 

terms of v also for that all that we do is – we differentiate this equation. If I differentiate 

this equation I have r dot here, I have v dot here and I have q dot here. And then, this q dot, 

we replace by v. So, this I have r dot v and v. That way the equation is written with respect 

to v.   

Now in this problem, the external load that has been taken as in this study as a base 

excitation.  So, this entire thing can be put in a shaker and it can be excited that is how the 

they did the experiment.  So, the base excitation if we think that the base excitation is A 

sine omega t which is base excitation. So, it is not a fixed end anymore, it is just excited 

freely.  So, this end is free and which is just free, but clamped in the sense that it does not 

allow any rotation and this entire thing is excited.   

Now one way of doing it is writing the motion here as a boundary condition and solving 

for it.  The other way of doing it is using the acceleration due to this base excitation and 

finding out the corresponding inertia force distributed over the beam and taking that as a 

force in the opposite direction and that is what has been done here. So, the inertia force due 

to the base excitation motion which is distributed throughout the body is written as here.  

Here t is the thickness, b is the width, L is the length and this is the force. So, the distributed 

force is – equivalent distributed force is A rho A omega square sine omega t dA, where A 

is the cross-section area of the beam at any x.  

𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑓𝑜𝑟𝑐𝑒 = ∫ 𝜌𝐴𝜔2 sin 𝜔𝑡 𝑑𝐴

 

𝐴

  

And this is this has to be taken in the negative direction that is already taken care of in the 

sign because if I find out acceleration from here that gets a negative sign. So, we have got 

rid of the negative sign here. So, the force is taken in the opposite direction.  So, that is 

how this problem is solved and solving the coupled equation, the displacement and the 

charge or the charge current or the voltage can be found out.   
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Now, for this study in the paper that we are referring a quick pack model QP40N that was 

made by Mide Technology Corporation, Medford, Maryland, USA was used it is a bi-

morph actuator.  So, what it means that it already has the host and the two pieces at the two 

sides.  So, it was just put in a shaker and it was tested and the mathematical model 

developed what tested against the experiment and a good match was found.  So, generally 

when we look into the displacement or the current or any response here, it looks like this. 

Initially there is a transient part and after some time depending on the value of the structural 

damping as well as the load resistance, it gets stabilized and it does a stable oscillation. 

So, the amount of energy that we can harvest depends a lot on the load resistance that we 

put. So, for that a parametric study is presented in the paper at different frequencies, 

different amount of load resistance was given and it was seen how much it is efficient in 

extracting energy and it was found out that if the load resistance matches with the 

impedance of the piezo, then the best efficiency is obtained.  So, this was about an that I 

mean the experimental scenario. In real life, if this has to be applied, then to do the analysis 

the force has to be known. Now one good application is the control of aero elastic 

instability. So, in aero elastic system sometimes it goes to dynamic instability because of 

the negative, I mean because of the effect of the aerodynamic load. So, the aerodynamic 

load depends on the structural displacement as well as velocity. So, it affects in such a way 

that the structural system starts taking energy from the aerodynamic system and the 

effective damping becomes negative. So, in that case if the energy can be dissipated taken 

out by the load resistance, then the structural vibration can be stabilized and the extracted 

energy can be used for some meaningful work.  So, that is where a lot of research has been 

done and is also going on and there are many others finding by other researchers also.  So, 

the system that we discussed where a linear harvester. So, this kind of harvesters work very 



well when the excitation frequencies match with the structural structures natural frequency 

which means the system is in near resonance. But when we go away from the resonance, 

its response dies down. But in a non-linear system near the resonance, we see a wide band 

here. So, a wide band energy harvesting can be done in case of non-linear system.  So, that 

is where also a lot of research has been done and also there are findings like a structure 

which is bi-stable. A bi-stable structure means like a buckled column. So, it has two 

stabilities at the top and at the bottom. So, this bi-stable structures can have small amplitude 

vibration around one stable equilibrium, it can have large amplitude vibrations around one 

stable equilibrium and it can have very large oscillation when it snaps between the two 

equilibriums.  So, in the when this happens a lot of more energy can be extracted and a 

good amount of research has been done in this field also. So, these are the possibilities.  So, 

that is it about the mathematical model of the piezoelectric beam-based energy harvester.   
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We will discuss more about this and also vibration control applications in the next lecture.  

Thank you. 


