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 Welcome to the second lecture!  In the last lecture we saw the Hamilton's principle and 

derived the governing differential equations from there. Now, today we will talk about the 

solutions.   So, as we saw before for static cases the solution can be done directly from the 

variational indicators. and the energy expression or it can also be done starting from the 

governing differential equation by multiplying some test functions.  Now, when we 

multiply test functions, we saw two approaches in the first approach we just multiply it and 

do not do any integration by parts in the second approach we do integration by parts to 

divide the derivatives as evenly as possible. So, we will again we look into all the three 

approaches for this dynamic problem. Now, our equation is so, we have written the static 

equation which we already derived there.  So, we will just add the extra terms that comes 

here due to the dynamic nature. So, this equation we already knew we saw it while solving 

the static problem.  Now, because the problem is dynamic, we are going to get one more 

term here which is this. 
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   So, this part comes due to the inertia. Similarly, we can define the error function if you want to 

define the error.  Again, this is the error that was there when we were solving the static problem. 

Now, the problem has changed. So, we have to add more term to the error. Now, the error is this.  

Error function - 
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Now, what we do is we multiply the ∅'s to the error and make that integral 0 we have already 

defined the error ∅ has to be assumed as we did before and after we multiply this ∅ the 

solution comes in the form of a  matrix for the static case the solution came in this form. Now, 

for the present case the solution would come   in this form. Now, previously we assumed our 

∅ as so, we had 𝑢0 as a function of x and our assumption was this is ∅ui as a function of x 

multiplied by qui .  Now, here our u is function of both x and time. 

 

 So, it is x and t. Now, ∅ remains a function of x it cannot be a function of time, but now this 

unknown q becomes a function of x and i goes from 1 to M the number of approximations for 

𝑢0 that is m and w was similarly we can write as a function of x and time as i is equal to 1 to 

M   ∅𝑤𝑖(𝑥) 𝑞𝑤𝑖(𝑡). So, this q's are now function of x and q we as we know q is just the vector  

where we have 𝑞𝑢1  up to 𝑞𝑢𝑀  and 𝑞𝑤1  up to 𝑞𝑤𝑀  𝑞𝑤𝑁 . So, this is now our governing 



differential equation which we have to solve.   So, here we have got rid of all the partial 

derivatives. 
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 Now, when the problem was a static problem from the partial differential equation after 

applying the Galerkin technique we got a set of algebraic equations k*q = f was an algebraic 

equation   but now the problem has a dynamic nature. So, instead of having an algebraic 

equation we are getting  a system of ordinary partial differential equations. So, again for a 

static problem  from the partial differential equations we get a set of algebraic equations  I 

mean when we get rid of the space dependency we get a set of algebraic equations for 

dynamic problems  after getting rid of the space dependency we get a set of ordinary 

differential equations.  So, it becomes a initial value problem now.  Here the generalized 

stiffness matrix K_ij we already wrote it now accordingly 𝑀𝑖𝑗 is going to be 0 to L ∅𝑖 transpose 

minus 𝑚𝑏  𝑆𝑏  𝑑𝑒𝑙/𝑑𝑒𝑙𝑥(𝑆𝑏 ) 𝑚𝑏  minus. So, here it will be 𝑆𝑏del del x and here we have 𝑚𝑏 

minus del del x 𝐼𝑏 del del x and this  gets multiplied with ∅𝑗 dx and this ∅𝑖𝑗 this ∅𝑖𝑗they are 

same.  
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Force we already know we did it while solving the static problem. So, with so, this completes 

the first approach  again here we did not shift the derivatives using the integration by parts. 

So, because of this while we approximate our ∅ we have to make sure that these derivatives 

all exist for ∅. Now, in the second approach what we will do we will shift this we will shift this 

derivative.  So, in that case the requirement of the differentiation order of differentiation 

would be less. Now, to the in the second approach when we again  equation ordinary 

differential equation by a test function. So, the first ordinary differential equation which we 

have we multiply that with ∅𝑢𝑖 which can be seen here this is the first differential equation. 

Now, and in the differential equation in the terms for 𝑢0  we substitute j is equal to 1 to 

𝑀 ∅𝑢𝑗𝑞𝑢𝑗 and for w we substitute j is equal to 1 to N ∅𝑤𝑗𝑞𝑤𝑗 and in this substituted form we 

multiply ∅𝑢𝑖.  So, this is 𝑢𝑖this is ∅𝑢𝑖ok. 

 Now, we have this term here we do not have any spaced derivative here we have a spatial 

derivative, but we do not do anything with that here we have a spatial derivative which we 

shift which we did before also here we have a spatial derivative which we shift and we also 

shift this derivative.  The first term comes as it is the second term comes as it is in the third 

term which we  already did before for the static case again we are doing integration by parts. 

So, this  is considered as the first function. So, this multiplied by integral of this which is this  

at the limits 0 and L and then with opposite sign the derivative of this and integral of  this 

which is this integrated from 0 to L dx.   same thing is done from this term here this comes as 

it is.  
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Now, comes our second differential equation. In the second differential equation again, we 

substitute the same things and we multiply the equation with ∅𝑤𝑗. And here we can  see that 

this term has a spatial derivative which we will be shifting this does not have  any spatial 

derivative and this has a spatial derivative which will also be shifting and  here we have 

spatial derivative to shift here also we have spatial derivative to shift by  integration by parts 

same thing here. So, that is what we do.  

(Refer Slide Time: 011:25) 

 

This term comes as it is and then we shift the derivatives and we get this term. 



 

So, we shift the derivatives here. So, this is the first term, this is the second term and we can 

see that the derivatives have been equally distributed between ∅𝑤𝑖 and ∅𝑤𝑗 and then we do 

the same thing for the other term in the among the inertia terms and with us do the same 

things in the other terms as well and finally, after get  after finally, we get this expression.  

(Refer Slide Time: 012:19) 

 

 

 

So, we here we have a set of boundary terms and the integral terms and then after dropping 

out the boundary terms we get these two equations.  And then finally, this gives me a set of 

m plus n equations. So, here this is M equations because ∅𝑖, i goes from 1 to M and here we 

have n equations because i goes from 1 to N and as we have done before this is this can be 

written as a set of ordinary differential equations as this multiplied by q dot plus this stiffness 

matrix multiplied by q and that is equal to the force vector F. 
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 This we already know while solving the static problem we get we got this system a set of 

linear simultaneous algebraic equations and again because it is a dynamic problem we get an 

inertia term. So, it becomes a set of coupled ordinary differential equations.  

[
[𝑀𝑢𝑤]𝑀×𝑀 [𝑀𝑢𝑤]𝑀×𝑁
[𝑀𝑤𝑢]𝑁×𝑀 [𝑀𝑤𝑤]𝑁×𝑁

] {𝑞̈}(𝑀+𝑁)×1 + [
[𝐾𝑢𝑤]𝑀×𝑀 [𝐾𝑢𝑤]𝑀×𝑁
[𝐾𝑤𝑢]𝑁×𝑀 [𝐾𝑤𝑤]𝑁×𝑁

] {𝑞}(𝑀+𝑁)×1 = {𝐹}(𝑀+𝑁)×1 

 

 

Here 𝑀𝑢𝑢𝑖𝑗So, this is again M by M, this is M by N, this is N by M, this is N by N. So, these also 

M by M, this is M by N, this is N by M and this is N by N and this is m plus N by 1, this is also N 

plus N by 1, this is also M plus N by 1. So, 𝑀𝑢𝑢𝑖𝑗becomes 𝑚𝑏𝜙𝑢𝑖𝜙𝑢𝑗𝑑𝑥   𝑀𝑢𝑤𝑖𝑗becomes minus 

of 𝑠𝑏𝜙𝑢𝑖𝜙𝑤𝑗,𝑥𝑑𝑥  and 𝑀𝑤𝑢𝑖𝑗 becomes minus of −𝑠𝑏𝜙𝑤𝑖,𝑥𝜙𝑢𝑗𝑑𝑥   and 𝑀𝑤𝑤𝑖𝑗 is 0 to l 

(𝑚𝑏𝜙𝑤𝑖𝜙𝑤𝑖 + 𝐼𝑏𝜙𝑤𝑖,𝑥𝜙𝑤𝑗, 𝑥)𝑑𝑥 integrated from 0 to l. This matrices k and f we already know. 

So,  if you have to if we just write it once more it is 𝐾𝑢𝑛𝑖𝑗is equal to 0 to l 𝐸𝐴tor 𝜙𝑢𝑖,𝑥𝜙𝑢𝑗,𝑥𝑑𝑧 , 

𝐾𝑢𝑣𝑖𝑗is equal to ∫  
𝐿

0
 𝐸𝑆𝑡𝑜𝑟𝜙𝑢𝑖,𝑥𝜙𝑤𝑖, 𝑥𝑑𝑑𝑥 and 𝐾𝑤𝑢𝑖𝑗 is equal to 𝐸𝑆tot 𝜙𝑤𝑖,𝑥𝑥𝜙𝑢𝑖,𝑥𝑑𝑥 and 𝐾𝑤𝑤𝑖𝑗is 

equal to  𝐸𝐼tor 𝜙𝑤𝑖,𝑥𝑥𝜙𝑤𝑗, 𝑥𝑥𝑑𝑥 and 𝐹𝑢𝑖 we wrote as 𝐹𝑢𝑖. So,  this has m component this has n 

component. So, 𝐹𝑤𝑖is (𝑀𝑝𝜙𝑤𝑖, 𝑥𝑥 + 𝑝2𝜙𝑤𝑖)𝑑𝑥  So, this completes this equation we can solve 

this equation as an initial value problem and we will get q as a function of time. 



𝑀𝑢𝑢𝑖𝑗 = ∫  
𝐿

0

 𝑚𝑏𝜙𝑢𝑖𝜙𝑢𝑗𝑑𝑥 𝑀𝑢𝑤𝑖𝑗 = −∫  
𝐿

0

  𝑠𝑏𝜙𝑢𝑖𝜙𝑤𝑗,𝑥𝑑𝑥

𝑀𝑤𝑢𝑖𝑗 = ∫  
𝐿

0

 − 𝑠𝑏𝜙𝑤𝑖,𝑥𝜙𝑢𝑗𝑑𝑥 𝑀𝑤𝑤𝑖𝑗 = ∫  
𝐿

0

 (𝑚𝑏𝜙𝑤𝑖𝜙𝑤𝑖 + 𝐼𝑏𝜙𝑤𝑖,𝑥𝜙𝑤𝑗, 𝑥)𝑑𝑥

𝐾𝑢𝑛𝑖𝑗 = ∫  
𝐿

0

 𝐸𝐴tor 𝜙𝑢𝑖,𝑥𝜙𝑢𝑗,𝑥𝑑𝑧 𝐾𝑢𝑣𝑖𝑗 = ∫  
𝐿

0

 𝐸𝑆𝑡𝑜𝑟𝜙𝑢𝑖,𝑥𝜙𝑤𝑖, 𝑥𝑑𝑑𝑥

𝐾𝑤𝑢𝑖𝑗 = ∫  
𝐿

0

 𝐸𝑆tot 𝜙𝑤𝑖,𝑥𝑥𝜙𝑢𝑖,𝑥𝑑𝑥 𝐾𝑤𝑤𝑖𝑗 = ∫  
𝐿

0

 𝐸𝐼tor 𝜙𝑤𝑖,𝑥𝑥𝜙𝑤𝑗, 𝑥𝑥𝑑𝑥

𝐹𝑢𝑖 = ∫  
𝐿

0

 𝑁𝑝𝜙𝑢𝑖𝑥𝑑𝑥 + ∫  
𝐿

0

 𝑝𝑥𝜙𝑢𝑖𝑑𝑥 𝐹𝑤𝑖 = ∫  
𝐿

0

 (𝑀𝑝𝜙𝑤𝑖, 𝑥𝑥 + 𝑝2𝜙𝑤𝑖)𝑑𝑥

 

 

 

 So, that will tell us at each time step what is my q and if we get the value of q at each time 

step then we can back substitute to the approximation and that will give us what is the value 

of 𝑢0 and w at each time step.  
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 Now, we will look into the other approach where we directly put the approximations in the 

variational indicator and solve it. So, this is what this is our variational indicators.  So, we 

started from the Hamilton's principle and then we got rid of the time integrals  and we came 

to this expression to we came to this intermediate expression which is kind  of analogous to 



our virtual work expression. So, in this expression now we will direct if we put the put the 

approximations directly then can we get the solutions.  

Again, we have the same approximation for  𝑢0and w and we know that 𝜀0is 𝛿 (𝑢0)/ 𝛿 x. Now 

here it has to be modified  now it is no more a function of only x. So, 𝜀0 (x) is modified to be 

𝜀0   x and time. So, this takes care of the time part a space  part special part this this takes care 

of the time parts we can write function of x  and this is function of time. So, 𝜀0 (x) can be 

written as 𝛿 (𝑢0)/ 𝛿 x and which can be written as this and then K kappa, kappa is also a 

function of x and time. So, it is this is not this and then again this is a function of function of x 

and this  is function of time. So, we are familiar with this expression we did it before also the  

only difference is that now this q's are function of time. 
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  Now if we look at the previous expression that we wrote here this expression it can  be 

written in a compact form here. So, we can see that if we multiply this vector of  this double 

dots with this matrix and then we multiply here we get all the terms related  to the inertia 

here. Similarly, from this term all these multiplications and from all these multiplications we 

get whatever we had here and from this multiplication we get all these terms. 

 

 Now, if we look at this 𝑢0 double dot, w double dot and 𝛿 w double dot by 𝛿 x this can be 

written as this this matrix of ∅'s multiplied by this q's. So, here  q's also have to be dotted 

because we have put double dot here and this also have to  be dotted. Similarly, if you want 

to write 𝑢0 w and  𝛿 w/ 𝛿 x this will become that same G matrix multiplied by q. So, when we 



have  𝑢0 double dot, w double dot, del w double dot by 𝛿 x it is G matrix multiplied by q dot 

when we do not have the dots here it is G multiplied by q. This we have already done now this 

we got from the from the static cases we already did this and here we have B multiplied by q 

𝑢0 w we have already done it and we got this. Now, what we do is we put these expressions 

in the in this expression we put all these approximations in this expression and from there 

we get the solutions.  

(Refer Slide Time: 024:11) 

 

 

 

Now, to do that we can write the first term which has all the inertias as 0 to L delta of {q} 

transpose multiplied by [G] transpose multiplied by [H] multiplied by [G] multiplied by {q 

double dot} *dx. Because we have seen  that 𝑢0 w 𝛿 (w)/ 𝛿 x is equal to G multiplied  by {q}. 

So, 𝑢0 w 𝛿 (w)/ 𝛿 x transpose which is a row vector that becomes  {q} transpose [G] transpose 

and then if we take a variation here the variation comes here.  And then plus as we wrote for 

the static problems it is ∆ {q} transpose multiplied by [B]transpose multiplied by [D] 

multiplied by [B] *d x and then we have 0 to L ∆{q} transpose [C] transpose 𝑝𝑥𝑝𝑧 ∗ 𝑑𝑥 and 

then we have 0 to L ∆{q} transpose [B] transpose multiplied by 𝑁𝑝𝑀𝑝𝑑𝑥 and that is equal to 

0.  

∫  
𝐿

0

 𝛿{𝜀}⊤[𝐺]⊤[𝐻][𝐺]{𝑞̈}𝑑𝑥 + ∫  
𝐿

0

 𝛿{𝑞}⊤[𝐵]⊤(𝐷)[𝐵]{𝑞}𝑑𝑥 − ∫  
𝐿

0

 𝛿{𝑞}⊤[𝑐]⊤ {
𝑝𝑥
𝑝𝑧
 } 𝑑𝑥

− ∫  
𝐿

0

  {𝑞}⊤[𝐵]⊤ {
𝑁𝑝
𝑀𝑝
} 𝑑𝑥 = 0 



 So, again we have delta q transpose everywhere.  So, after getting rid of this we get an 

equation of this form. We can directly write the equation  in the matrix form and the equation 

looks like this. [M] {q} double dot plus [K]*{q} is equal  to F where [M] is integral of 0 to L 

integral  [G] transpose [H] [G] *dx and then we  have the K matrix that is B transpose D B d x 

and then we have the force vector as 0 0 to L [C] transpose {𝑝𝑥  𝑝𝑧}* dx plus 0 to L [B] transpose 

{
𝑁𝑝
𝑀𝑝
} * dx. Now, if you go back, the [G] matrix is 3x(M+N) /3. 

 

 [H] matrix is 3 x 3 matrix this we term as [H] matrix this matrix let us term that  as [H] matrix. 

So, it is a 3 x 3 matrix. So, it is a 3 x 3 matrix and then [G] matrix is  3x(M+N). So, if we multiply 

this it becomes a (M+N) x(M+N) and this is  also (M+N) x(M+N) and this is (M+N)x1. So, again 

we have a system of coupled  or ordinary differential equations solving which we can get our 

solution. 

[𝑀] = ∫  
𝐿

0

  [𝐺]⊤[𝐻][𝐺]𝑑𝑥 

[𝐾] = ∫  
𝐿

0

  [𝐵]⊤(𝐷)[𝐵]𝑑𝑥 

  Now, in all the problems we have got the equation in this form where we have inertia term, 

we  have a stiffness term and the force vector. But in what happens is in real life there  is 

always a damping associated with this which we cannot get directly from where we started.  

So, what is generally done is artificially damping is added. One common very common way  

of adding the damping is writing the damping matrix as a combination of the mass matrix  

and the stiffness matrix. Now, this alpha and beta these factors can be found out when  the 

damping ratios are known and this is called Rayleigh damping. 

[𝑀){𝑞̈} + [𝐶]{𝑞̇} + (𝐾]{𝑞} = {𝐹} 

 

 So, it is artificially added  damping and then this entire combination of the equations are 

solved and the solution  is obtained. So, with this I would like to conclude this lecture here.   

Later on we will  see how to how these problems are solved, how these ordinary differential 

equations  are solved and we will see some more cases.  Thank you! 
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