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Dynamic Analysis of Beam for Induced Strain Actuation Using Energy Principle  

Welcome to the fifth week.   

In the last week we looked into the energy method based analysis of beams with 

piezoelectric material, but for the static cases.  Now, we will start looking into energy based 

analysis of beams with piezoelectric materials for dynamic cases.  Now, when we were in 

the static cases we saw that we had a principle where it says that the variation of the total 

potential energy is 0 for equilibrium and then we also saw the virtual work internal is equal 

to external virtual work virtual work.  Now if you want to look into dynamic problems here 

we have time dependence and here we have kinetic energy also.  So, here we have 

something called Hamilton's principle which says that the variational integrator delta of 

integral of T minus U plus V between any two arbitrary time step t 1 and t 2 is 0. 

So, T is kinetic energy, U is strain energy and V is the potential of the applied load.  Now, 

so we have to so U plus V is the total potential energy it has two components strain energy 

and the potential of the applied load.  So, T minus U minus V this quantity if it is integrated 

between any two arbitrary time steps t 1 and t 2 that variation of that integral is 0 that is 

what this principle says for this to be in equilibrium.  Now here please understand that t 1 

and t 2 are arbitrary time steps this is also written  as t 1 integral between t 1 and t 2 of delta 

t minus delta U plus delta W where if our  force is non conservative. 

𝛿∫ [𝑇 − (𝑈 + 𝑉)]
𝑡2

𝑡1

𝑑𝑡 = 0,∫ [𝛿𝑇 − 𝛿𝑈 + 𝛿𝑊]
𝑡2

𝑡1

𝑑𝑡 = 0 

(Refer slide time: 3:55) 



 

So, if the if the if the force can be derived from a potential V we can write this, but if the 

force is non conservative then we cannot define a potential in that case we have to write it 

in this form.  Now, we will apply this principle for a very simple case first and then we will 

look into the beams with piezoelectric materials.  So, as we did before let us again look 

into a bar.  So, for the static case the bar was under a static distributed force P. Now this 

bar can be under a distributed force P which can be a function of time and this results in 

displacements and that is also a function of time. 

Now we have to write T minus U minus V. So, t if we write delta of the integral of T minus  

U minus V dt is equal to 0 then we have delta of t 1 to t 2 or we can take the delta first  

inside and then we can proceed.  So, delta of T is equal to 0 and then our kinetic energy T 

can be written as integral over the volume of half rho u dot square dv because u is a 

displacement along x direction.  So, if the velocity is u dot.  So, if I take half rho u dot 

square that is kinetic energy per unit volume and then if we integrate it over the volume 

that becomes our total kinetic energy. 

𝛿 [∫ (𝑇 − 𝑈 − 𝑉)𝑑𝑡
𝑡2

𝑡1

] = 0 ⇒ ∫ (𝛿𝑇 − 𝛿𝑈 − 𝛿𝑉)
𝑡2

𝑡1

𝑑𝑡 = 0 

∫ (𝛿 (∫
1

2
𝜌𝑢̇2𝑑𝑉

𝑉

) − 𝛿 (
1

2
(
∂𝑢

∂𝑥
)
2

) + 𝛿(𝑝𝑢))
𝑡2

𝑡1

𝑑𝑡 = 0 

∫ [𝛿∫ 𝑚𝑢̇2𝑑𝑥 − 𝛿∫
𝐸𝐴

2
(
∂𝑢

∂𝑥
)
2

𝑑𝑥 − ∫ 𝑝𝛿𝑢𝑑𝑥
𝐿

0

𝐿

0

𝐿

0

]
𝑡2

𝑡1

𝑑𝑡 = 0 



⇒ ∫ [∫ 𝑚𝑢̇𝛿𝑢̇𝑑𝑥 − ∫ 𝐸𝐴
∂𝑢

∂𝑥
𝛿 (

∂𝑢

∂𝑥
)𝑑𝑥 − ∫ 𝑝𝛿𝑢

𝐿

0

𝐿

0

𝐿

0

]
𝑡2

𝑡1

𝑑𝑡 = 0 

[∫ 𝑚𝑢̇𝛿𝑢𝑑𝑥
𝐿

0

]

𝑡2

𝑡1

−∫ (∫ 𝑚𝑢̇𝛿𝑢𝑑𝑥𝑑𝑡 + ∫ 𝐸𝐴
∂𝑢

∂𝑥
𝛿 (

∂𝑢

∂𝑥
) − ∫ 𝑝𝑢𝑑𝑥

𝐿

0

𝐿

0

𝐿

0

)𝑑𝑡 = 0
𝑡2

𝑡1

 

∫
1

2𝑉
𝜌𝑢̇2𝑑𝑉 = ∫ ∫

1

2
𝜌𝑢̇2

𝐴

𝐿

0

𝑑𝐴𝑑𝑥 = ∫
𝑚

2

𝐿

0

𝑢̇2𝑑𝑥 
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And then here we have half into del u by del x square and then here we have delta of p into 

u theta plus.  dt equal to 0.  Now, we have to put the volume integral here.  So, it is dv.  

Now, this expression again can be broken down into a volume integral and an area and an 

integral over the length. 

So, we can write this as half rho u dot square dA dx and then it becomes 0 to L it is our rho 

integrated over the cross section.  So, if the beam has a cross section of area A and if we 

integrate rho over that cross section we can call it m, m is mass per unit length and then it 

becomes m by 2 u dot square dx where m is equal to rho integrated over the cross section.  

So, this can be written as dx and then we have this we already know that this can be written 

as and we have E here also the elastic modulus.  So, this can be written as E A by 2 del u 

by del x square dx and the integral ranges from 0 to L. So, we have we already did it before 

while doing the static analysis we integrated it over the cross sectional area and that gives 

us A and then we integrate it over the domain x equal to 0 to L. 



And then here we have p can be taken out of the variation and we have p into delta u and 

this is also an integral it goes from dx. So, here it goes from dx. So, this entire quantity is 

0.  Now, this can be rewritten as t1 to t2 we have del delta can be taken inside u delta del 

u dot dx and this can be written as E A del u by del x into delta of del u by del x dx and 

this remains same p into delta u and this is integrated from T 1 to T 2.  Now what we do is 

here we have derivatives, but these derivatives are with respect to time. 

So, it integrated parts with respect to time. If we do that then we get m u dot delta u dx. So, 

we are taking this as a first function and then we are integrating it with respect to time. So, 

it is delta u and this entire thing evaluated between t 1 and t 2 and then we have integral 

from t 1 to t 2 derivative of this and this. So,  0 to L if I take derivative of u dot with respect 

to time it becomes u double dot and  we have del u del x del t and then we have rest of the 

terms. 

 

So, the term here  the symbol here the sign should be plus and rest of it we can put inside 

it. So, inside the time integral. So, it becomes 0 to L E A del u by del x del u by del x and 

we have  0 to L p u this also dx and dx dt that is equal to 0.  Now if I compare these two 

terms we can see that this term is defined only at t1 and t2. So, the value of value of this 

term depends only at time t1 and t2 the value at the  time t1 and t2 whereas, this term is an 

integral. 

 

 So, along the time axis if I have  t1 and t2 and the and the quantity is very like this. So, 

this term depends on only the value here and the value here and these terms depend on the 

values at the entire domain which means if they are some has to be 0 that is only possible 

when this term is individually 0 and this term is individually 0 because it has to hold for 

any arbitrary t1 and t 2. If t1 and t2 are some fixed time interval  then we could not say 

this, but because it is an arbitrary time interval then this can  only hold true when this term 

is 0 and the other term which is defined as an integral  is individually 0. So, that gives me 

that this term this integral is 0 again this integral  is between I mean in this integral is 

defined in between T 1 and T 2 which is arbitrary.  So, again this integral can be 0 only 

when the integrand itself is 0. 

So, we can say that the term inside the bracket is 0. So, now we can get rid of the time and 

we can simply write this equal to 0 and again excuse me. So, we have delta here. So, we 

will rewrite this. So, now we have got rid of got rid of the time and we have established 

that 0 to  L mu double dot del u plus 0 to L E A  del u by del x multiplied by the variation 

of del u by del x minus 0 to L P del u d x  equal to 0. 

−∫ (−𝑚𝑢̈)
𝐿

0

𝛿𝑢𝑑𝑥 + ∫ 𝐸𝐴
∂𝑢

∂𝑥

𝐿

0

𝛿 (
∂𝑢

∂𝑥
)𝑑𝑥 − ∫ 𝑝𝛿𝑢 = 0

𝐿

0

 



∫ 𝑚𝑢̈𝛿𝑢𝑑𝑥 − 𝐸𝐴
∂𝑢

∂𝑥

𝐿

0

𝛿𝑢|0
𝐿
−∫

∂

∂𝑥

𝐿

0

(𝐸𝐴
∂𝑢

∂𝑥
)𝛿𝑢𝑑𝑥 − ∫ 𝑝𝛿𝑢 = 0

𝐿

0

 

⇒ ∫ (𝑚𝑢̈ −
∂

∂𝑥
(𝐸𝐴

∂𝑢

∂𝑥
) − 𝑝)

𝐿

0

𝛿𝑢𝑑𝑥 = 0 

𝑚𝑢̈ −
∂

∂𝑥
(𝐸𝐴

∂𝑢

∂𝑥
) − 𝑝 = 0 
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Now, this term if I neglect this then rest of it this minus this equal to 0 this is nothing, but 

our virtual work principle and if we look at the first term there also we see that delta u is 

multiplied. So, which means we can also treat this term as something analogous to this 

term and we can do this if I put a negative sign here and a negative sign here that gives the 

entire thing positive, but this then this we can take as a pseudo force minus mu double dot 

which we know that when something is in a is under acceleration we can we can consider 

that there is a pseudo force acting in the negative direction of it and the magnitude of that 

force is mass multiplied by that acceleration.  So, this is also we can write this is also we 

can consider as a virtual work expression given the fact that we have a pseudo force minus 

mu double dot.  So, while solving the problems we can also directly write this and start our 

solution from here. So, we have now mu double dot del u d x and then this we have to just 

integrate by part once we have done it before while solving the static problem and this is 

del u evaluated between 0 and L evaluated at 0 and L and then we have d x minus and 

given the boundary condition this term is 0. 



So, we are left with this minus this minus this and that gives us a that gives us again delta 

is arbitrary. So, we can write mu double dot minus delta del by del x of E A del u by del x 

minus p is equal to 0. So, that is our governing differential equation.  So, this is our 

governing differential equation. Now, we can develop solutions from here we can again 

we can follow the same thing we can take this equation we can multiply it with test function 

and get the solution or we can directly write the energy expression the Hamilton's principle 

or we can write this intermediate expression and from there we can develop the solutions. 

Now, we will derive the governing differential equation for a beam which has piezoelectric 

patches and there is dynamic actuation which means the input voltage can be function of 

time and there can be distributed load also which can also be function of time. So, there 

can be distributed load p x and there can  be distributed load p z and there is input voltage 

V 1 it can be same  it can be different V 1 V 2 and these can all be function of time and 

naturally the  response also becomes function of time and this is a induced strain actuation 

problem.  So, we know that we are giving some voltage v and because of that we want to 

find out the response of the beam.  So, we will write the expressions here. So, we started 

with Hamilton's principle and from there we got an expression like this write the similar 

expression here. 

So, we will write the mass into acceleration and the integral of that and we considering all 

the displacement components. So, we know so, this is rho v is the density. So, density 

multiplied by acceleration along the z direction and its integral which is this and here we 

have the acceleration along the x direction because we know that the displacement along x 

is u 0 minus z into del w by del x and that gives me that u double dot is equal to u 0 double 

dot minus z into delta of w double dot by del x which can also be written as del 3 w by del 

t 2 del x. So, we have two displacements in two directions we found out the corresponding 

inertia forces and we wrote this term and then plus we have the internal virtual work which 

we already know we wrote it while solving the static problem and then we have the external 

virtual work.  Now, we integrate this expression within the cross sectional area if we do 

that then rho v u 0 double dot delta of u 0 on being integrated over the cross section gives 

us m b. 

(Refer slide time: 24:01) 



 

𝑢 = 𝑢0 − 𝑧
∂𝑤

∂𝑥
, 𝑢̈ = 𝑢̈0 − 𝑧

∂𝑤̈

∂𝑥
 

∫ 𝜌𝑏𝐴
𝑑𝐴 = 𝑚𝑏 , ∫ 𝑧𝜌𝑏𝐴

𝑑𝐴 = 𝑆𝑏 , ∫ 𝑧2
𝐴

𝜌𝑏𝑑𝐴 = 𝐼𝑏 

So, if I integrate rho b within the cross section it gives me m b similarly from here also we 

get an m b m b w double dot del w and here we have a term rho v u 0 double dot multiplied 

by minus of z into delta w by delta x minus of and its variation and if we integrate that term 

we get S b u 0 double dot then variation of del w by del x.  So, if we integrate z rho b over 

the cross sectional area that gives me S b and then we have another term rho b multiplied 

by minus z then this term del 3 del 3 w by del 2 del t 2 del x multiplied by variation of u 0. 

So, this gives me this and again we have S b is equal to z rho b integrate over the area and 

then finally, we have this rho v multiplied by this term multiplied by this term. So, here we 

have z and z z square. So, z square on being integrated after being multiplied with rho v 

and on being integrated over the area gives me I b. 
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∫ 𝑆𝑏

𝐿

0

𝑢̈0𝛿 (
∂𝑤

∂𝑥
)𝑑𝑥 ⇒ 𝑆𝑏𝑢̈0𝛿𝑤|

𝐿
0 −∫

∂

∂𝑥

𝐿

0

(𝑆𝑏𝑢̈0)𝛿𝑤𝑑𝑥 

∫ 𝐼𝑏(
𝐿

0

∂3𝑤

∂𝑡2 ∂𝑥
)𝛿 (

∂𝑤

∂𝑥
)𝑑𝑥 = 𝐼𝑏

∂3𝑤

∂𝑡2 ∂𝑥
|
0

𝐿

− ∫
∂

∂𝑥

𝐿

0
(𝐼𝑏

∂3𝑤

∂𝑡2 ∂𝑥
) 𝛿𝑤𝑑𝑥 

∫ 𝑁𝑝
𝐿

0
𝛿 (

∂𝑢0

∂𝑥
)𝑑𝑥, ∫ 𝑀𝑝

𝐿

0
𝛿 (

∂2𝑤

∂𝑥2
)𝑑𝑥 

So, we have this rest it is then rest of the term comes from the internal virtual work 

expression and we already know that. So, this we have done while solving the static 

problem we defined E a total E s total N p. So, this is just same thing applied here and this 

remains same. After that our job is to do integration by  parts now here in this term we do 

not have any space derivative here we do not have any  special derivative here we have a 

special derivative here we have a special derivative  and here we have a special derivative. 

So, we will shift some of the derivatives and similarly here we have special derivatives. 

So, we do we will do some integration by parts.  So, m b w dot w double dot del w came 

as it is because there is no special derivative  and similarly this term also came as it is and 

then we had a term S b u double dot multiplied  by variation of del w by del x and this was 

integrated from 0 to L. So, if we do integration  by parts that gives me S b u 0 double dot 

delta w evaluated at x equal to 0 and L minus  of del by del x of S b u 0 double dot multiplied 

by variation of w. So, this is what we can  see here here here and here and then we had this 

term this came as it is the derivative  was in del w by del x we did not shift it and then we 

had one more term which was I  b del 3 w del t 2 del x multiplied by variation of del w by 

del x integrated within 0 to L  and this gives me I b del 3 w del T 2 del x del w evaluated 

at L and 0 and subtracted  and then we have del del x of I b del 3 w del 2 T del x multiplied 



by del w then integrated.  So, this I b so, this term is written here here then rest of it is we 

have already done we integrated by parts and got this terms this terms this we have already 

done for the static cases this is already done and then we have this and then again like we 

did before we wrote this also 0 to L this we also integrated by parts like before and then 

we wrote this and similarly we integrated by part this term also like we did before and 

wrote here. 
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So, we had to do it twice. So, after doing all these things here we have separated the 

boundary terms and here they are the integral terms and again these variations are arbitrary 

all this del u 0 and del w variations and del variation of del del w by del x they are all 

arbitrary and that tells me that the integral has to be 0 and the integrand has to be 0. So, 

after making the integrand 0 we get these two equations. So, these two are now my 

governing differential equations. So, these are the governing differential equations for an 

induced beam induced strain actuation problem for a beam for a dynamic case.  

So, we will end the lecture here in the next lecture we will see how to solve these problems. 

Thank you. 


