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In the last lecture, we started with the virtual work equation for this beam with piezo's   and 

from those equations, we saw how we can get a governing equation that we are familiar 

with.  

Now, we will see how by starting from the same virtual work equation, we can get a 

governing equation in a different form. So, again we look at equilibrium equation, but we 

will derive it in a different form. So, after we start with the virtual work equation, we 

obtained this form.   
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So, if I don't shift the derivatives here, if I don't do the integration by parts, if we written it 

as it was, we have it here and rest of it we know how to get. Now, what we will do is instead 

of integrating by parts here and here, we will do the integration by parts here and here, and 

that will give us a governing differential equation in a different form. So, if we look at the 

first term which was our integral E A total, if I integrate by parts, it gives me: E A total, 



del u0 by del x multiplied by integral of this and integral of this, is nothing but delta of u0 

and it is evaluated at x equal to 0 and L and then we have minus of differentiation of this. 

So, del del x of E A total, del u0 by del x, multiplied by integral of that. So, delta of u0 0 to 

L dx. So, we can see it here, these terms. So, these terms come from this.   
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Similarly, we can do the same thing for the next term where we have delta of del u0 by del 

x multiplied by E S total, into del 2 w by del x 2. After we do the integration by parts, we 

get this term. And then, we had Np multiplied by delta of del u0 by del x and that were 

integrated from 0 to L. So, if I do integration by parts here, it gives me Np multiplied by 

the integral of this, which is delta of u0 0 to L minus del Np by del x into variation of u0, 

and which we can see here. So, this had a negative sign before.  So, that is why it was 

negative, it is positive, what we see here. 
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Then we had a term like E S total, multiplied by del u0 by del x, multiplied by variation of 

the second order derivative of w and this was integrated from 0 to L. If I integrate this by 

part, that gives me E S total, del u0 by del x variation of delta w by del x, which is evaluated 

at the limit 0 and L. And then, minus I would have derivative of this and integral of this. 

So, now, the other term that I get as minus, I am writing here, multiplied by variation of 

del w by del x. But again, if I integrate this by parts, this would give me minus del by del 

x, E S total, multiplied by variation of w and that gets evaluated at 0 to L.  And then, plus 

this differentiated twice, E S total. So, here this term is missing, it is E S total, del u0 by del 

x multiplied by delta w. And here, we have the same thing, but differentiated once more 

multiplied by delta w dx. So, that is how we get this term, this term and this term. 

Accordingly, we can find out rest of the terms by doing the integration by parts and we get 

this entire expression.  
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Now, if we look at this entire expression, we can see that the variations are in del u0 w, del 

w by del x, and that is all. So, if we separate out the components, that are multiplied with 

delta of u0, delta of w, and delta of del w by del x, we get this. In this expression, we have 

these two terms that are integrated, whereas, these expressions are: these three expressions 

are all defined at the boundaries.  Now, if we look at these boundary terms, we can see that, 

this is nothing but our N, normal force N. 

So, this thing inside the bracket is normal force N. Why? Because, we have seen so far, 

that E A total, plus E S total, multiplied E A total, del u0 by del x, plus E S total, del 2 w 

by del x 2, minus Np, minus N, equal to 0, which means that this equal to N. So, this is 

equal to N here.  
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Similarly, using the same reason, this is my M. And this is nothing but del M by del x, 

which gives me shear force. Now again, we can make similar argument and we can say 

that these terms are 0 for our case because at x equal to 0, we have the axial displacement 

specified which is u0, which means that delta of u0 is 0. At the other end the normal force 

is 0. 

Similarly, here we have the slope del w by del x specified, which means the variation of 

the slope is 0 at this end. And at x equal to L, we do not have the bending moment.  So, the 

bending moment is 0 at x equal to L. And at x equal to 0, we have the displacement 



specified.  So, del w is 0 here and at x equal to L, we do not have any shear force.  So, that 

helps me get rid of all these terms and we are left with only this and this.  And again, we 

know that delta u0 and del w are independent and arbitrary variation, which tells me that 

these integrands must be individually 0. 
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And from that same argument we can say that this is our one governing differential 

equation, and this is our other governing differential equation. So, we get the governing 

differential equations in a different form. Now, if I compare this form with our previous 

form, the difference is that while getting the previous form, we did integration by parts in 

these terms where Np and Mp were present, sorry, where Px and Pz were present whereas, 

here we did integration by parts in the other terms. And there, it was written in terms of 

variation of epsilon 0 and kappa. Here it is written in terms of u0 and w. And from there, 

we get these two equations.  Now, we will see using these two equations, how we can get 

the solution to the problem. 
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Now, these two equations are now written in a compact form as this. So, where we have 

this operator. So, u0 comes here, and it gets operated here, w comes here and it gets operated 

here and we get the first equation. Similarly, u0 comes here and w comes here and we get 

the second equation. We are going to solve it by using a technique named the Galerkin 

technique.  
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So, let us apply the technique. Again, let us assume that we have u0 as this. So, u0 is written 

as a combination of this product and within this product, we have phi and q. So, phi ui is 

chosen function, chosen function to approximate u0 and similarly phi wi is chosen to 

approximate w.  If we can choose in such a way that they satisfy both essential and natural 

boundary conditions, I mean the geometric and force boundary conditions, that is good, 

but at the bare minimum they should satisfy the essential boundary conditions. So, these 

phis are all known to us, because we are choosing them and they are being multiplied with 

unknown constants q ui and this q wj.  Now, q ui, q wj are unknowns to be found out. Now, 

we have assumed that our u0 has this m number of terms and w has this n number of terms. 

So, the vector q u ranges from 1 to m and the size of the vector q w is n.  Now, we can 

write a vector u which has u0 and w. And then, we can write it in terms of this phi's and 

this q's as this.  Here we have first m terms, which is populated with this q u's and then rest 

of the n terms are 0. And here, we have first m term 0 and then rest of the n terms populated 

with this q w's.  So, this is of size 2 multiplied by m plus n. And this is of size m plus n 

multiplied by 1.  Now, we can call this entire vector as one q vector with size m plus n. So, 

within this q vector the first m number of q's are q u’s and rest of the n number of   q's   are   

q w’s and it is multiplied with the same thing.  So, in a compact way we can call this as phi 

matrix multiplied by q matrix. So, this is our phi matrix and this is our q vector.   
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So, again the governing equation rewritten here.  So, if we put the approximations of u0 

and w so, that becomes our phi multiplied by q. Now, because they are approximations, 

they may not be exact with u0 and w. So, if I take the right-hand side to the left-hand side, 

and if we substitute u0 w vector as q as phi q, then we can say that, this entire thing may 



not be exactly 0 because phi q may not be exactly equal to u0 w.  So, there is can be some 

error which is remaining  and that error is this.  So, the close we are to the real value of u0 

and w this is the error.  
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Then what we do is: we multiply this error function by this approximation phi’s and then, 

so, if we go back to our phi vector. So, this is our phi 1, this is our phi 2, this is our phi 3 

phi m and so on and we can go up to phi n.  So, we may say that, we may like to call this 

as our phi 1 vector and we can go on. So, this is our phi m vector and we may call each of 

them as a vector and we can say that, this phi matrix consists of, this capital phi matrix 

consists of all this small phi vectors.   

(Refer Slide Time: 18:40) 



 

Now, in this error function, if I multiply the - what we are doing here, if I multiply the i th 

phi, the transpose of that with the error function and then integrate from 0 to L and equate 

that to 0 and we can do it for all these phi's. So, that gives me total m plus n number of 

equations. And those m plus n number of equations would have these q's as the unknowns 

and that will give me. So, it will give me m plus n number of equations with m plus n 

number of unknowns and that can be written in a matrix form as this. Now, this we call 

stiffness matrix and this we call force vector.  In the stiffness matrix, the generalized i th 

component can be written as this.  So, the so k ij is equal to phi i multiplied by this matrix 

multiplied by phi j.  So, we know that it is 1 by 2 because the i th column of phi is 2 by 1, 

and similarly this is 2 by 1 and this is 2 by 2. 

So, after this multiplication this gives me one value the ij th value of the Kth matrix. Let 

us assume that our phi j, let us assume that, we are taking from our phi matrix, we are 

taking this as i and this as j.  So, let us assume that i is equal to 1and j is equal to 2. So, in 

this case, it would look like this: phi u1 0 multiplied by this vector del by del x, E A total 

del by del x, and then, we have this phi u1 and 0.  So, when I multiply this column with 

this rho, I have del del x of E A total, del phi 1 del x, plus 0. And here, I have del 2 del x 2 

of E S total, del phi 1 del x as 0. So, as we said, let us assume i is equal to 1 j is equal to 2.  

So, it is 2. So that gives me phi u1 0, and here, we have del del x of E A total, del phi ut by 

del x. And here, we have del 2 by del x 2 E A total, del phi u2 by del x. And of course, this 

has to be integrated from 0 to L. This also has to be integrated from 0 to L. Again, we 

multiply this rho with this vector and after we multiply, we are remaining with only one 

term. So, this term multiplied with by this term, that will give me just one value. This 

multiplied by 0 will give me 0. So, finally, we will get 1 by 1 term which is our k ij. So, in 



this particular case, which is k 12. So, accordingly we can just put any i here and any j here, 

and accordingly, we will get the k ij and this entire matrix will be populated.   
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Similarly, when I find out phi I, this becomes the expression. So, phi i is multiplied with 

del Np by del x, and del 2 Mp by del x 2, and then we have phi i transpose.  So, here also 

we have phi i transpose and here also we have phi i transpose multiplied with minus Px, 

Pz vector. Now, generally while evaluating this, we don't directly evaluate this, we shift 

the derivatives here also by integrating by parts and then we see that the boundary terms 

go 0 and the rest of the integral evaluated. So, instead of the differentiation being here, we 

get the differentiation here and we evaluate. So, later on when we do an example, we will 

see it in more details, how the derivative is shifted and how this term is evaluated in a better 

way. 

So, with this we get the k matrix and the force vector and by solving we get our q. And 

once we, and once we get our q. So, we have q u, we have q w's. So, we get q ui, q wj from 

here, and then we put it back in our approximation that u0, as a function of u is summation 

of phi ui into q ui, and w as a function of x is equal to phi wj into q wj.  So, we just put it 

here, and we put it here, and that gives us the desired solution. So, we get our solution. So, 

that is one way to solve these differential equations.    
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So, here we started with the differential equation and then, we multiplied them by each of 

these approximation functions and finally, this differential equation was converted to a set 

of algebraic equations. And then by solving the algebraic equations, we get our solution.   

So, with this I would conclude it here. We will look into some other similar techniques in 

the next lecture.  

Thank you. 


