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Introduction to Energy Principles for Structural Analysis 

Today, we are going to start a new topic that is on energy based analysis of structures with 

piezoelectric patches.  

(Refer Slide Time: 07:41) 

 

Now, so far we have seen how to analyze these structures when we have the governing 

differential equation and we solve those equations. But most of the times such kind of 

solutions are very difficult because  it is difficult to derive those equations in many times and 

even we can derive  those equations, it is difficult to solve them. So, when I said difficult to 

derive the equations I mean deriving by balancing the forces and using that approach. And 

even  if we derive it sometimes the solution becomes difficult. In fact, in very few cases it is 

easy to get the close form solution of those equations. 

In most of the cases, it is difficult.  For example, if we look at the equation that we got for our 

Euler Bernoulli assumption, so, there we had a matrix and this has EAtotal EStotal and EItotal and 

at the right hand side we have (N + Np) and (M + Mp). Now, when the structure is statically 

determinant, it is easy to find this N and M. So, for example, we had a beam like this. 

[
𝐸𝐴𝑡𝑜𝑡𝑎𝑙 𝐸𝑆𝑡𝑜𝑡𝑎𝑙

𝐸𝑆𝑡𝑜𝑡𝑎𝑙 𝐸𝐼𝑡𝑜𝑡𝑎𝑙
] {

𝜀0

𝑘
} = {

𝑁 + 𝑁𝑝

𝑀 + 𝑀𝑝
} 



In that kind of situations if I have some externally applied loads along x as well as z direction 

or some applied moment also we can find this N and M. But if the structure is statically 

indeterminate then the solution  becomes rather complex. Now, take the fact that suppose we 

have lot  of variation in the material or geometric property itself. Suppose the beam now looks  

like this or even it may have some jump in the properties and then suppose we put a piezo  

maybe somewhere here, in that kind of cases, getting a solution is not as straight forward  as 

it was for this case when we did not have this extra fixed end. I mean when the problem was 

statically determinant. 

So, we generally use energy based principles for solution of this kind of problems. So, before 

discussing the energy principles and  the related techniques, we would spend few minutes in 

discussing something called variational  calculus because that is what we would be using 

extensively in our formulations.  So, in variation calculus we have, suppose, a function f of x 

and suppose the function is defined like this. So, this is our f. Now, let us assume that we 

perturb the function little bit and get something another function maybe something like this. 

So, it is a small perturbation. This new function which is this maybe I can put it different color 

here, so, this black function which is a perturbed version of the red function is called as, we  

may term it as, f (x) plus delta of f (x). So, it is the function f itself and then some added 

variation on top of it. So, this delta f (x) is variation of f at x. Now, delta f of x means this 

difference between this new function and the previous function f. 

So, this is our delta f of x and that is variation of f at x. Now, if f is specified at some point 

variation is 0, that point, which means suppose, now I have a function f and this f is such that 

it has some specified value here, maybe it is a boundary condition. So, it says that the value of 

f has to be this. It has to be satisfied that is the boundary condition.  In that case if that is 

specified there then at that point the variation is not possible. 

So, the variation is 0 here. At other points, variation can be nonzero, but at that point we 

cannot have variation. So while solving our problems, we will see that our quantities of 

interest may have some boundary conditions. For example, when we want to solve these 

problems our solution, the displacement components can have boundary conditions here and 

here and we will see that at those points those variables cannot be varied; at other points 

they can be varied. And this variation of x this delta f is a small variation and for our purpose 

we will consider them to be arbitrary variation. 
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Now, these variations follow some properties. So, properties of delta so it is called a 

variational operator.  So, delta is variational operator and they follow some properties. First 

of all if we have two functions f and g and if we add or subtract them and take the variation 

that means the result of the addition or subtraction then the result is addition or subtraction 

of the individual variations. If we multiply f and g and take the variation of the product then 

this is this. 

The division f divided by g and then if I want to look at the variation it looks like this. Now, 

from this it can be shown that if I take the variation of the derivative  of x that is equal to the 

derivative of the variation of f. So, if I take the variation  of the derivative of f with respect to 

x and that is equal to the the derivative  of the variation of f. Similarly, we can also say that if 

we integrate f and take the  variation that is equal to this. So, these properties will be quite 

useful in our formulation that we do after that. 

𝛿(𝑓 ± 𝑔) = 𝛿(𝑓) ± 𝜕(𝑔) 

𝜕(𝑓𝑔) = 𝑓𝜕(𝑔) + 𝜕(𝑓)𝑔 

𝜕 (
𝑓

𝑔
) =

𝑔𝜕(𝑓) − 𝑓𝜕(𝑔)

𝑔2
 

𝜕 (
𝜕𝑓

𝜕𝑥
) =

𝜕

𝜕𝑥
(𝜕𝑓) 

𝜕(∫ 𝑓𝑑𝑥) = ∫ 𝜕𝑓𝑑𝑥 
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Now, we will talk about a very important principle that is principle of virtual work. So, let us 

assume that we have a three dimensional  body. It is any structure. It is a very generic thing. 

This is X, we have Y and Z as the system and let us assume that it has some boundary 

conditions at some points. 

Now, under some load it deforms and gets a new shape and suppose, the shape is this. 

Suppose this  is the new shape. This is getting on the application of the load and if you want 

to show the load  also suppose the loads are this. So, there are suppose n number of loads. So, 

there are n numbers of loads P1, P2 all the way up to Pn and under that load this body deforms 

in this way. 

So, in this deform configuration which is shown by this red lines this body is under stable 

equilibrium. Now, let us say that we give some perturbation  to this deformed shape and 

suppose this dotted black lines show the perturbation. So, we have three kind of lines, one is 

firm black line that is the undeformed body, the red  firm line that is the deformed body and 

the dotted black line that is the perturbed  version of it. So, we can say that if I just show this 

difference may be difference between this and this, that is our delta of u v w where u v w are 

the displacement along X, Y and Z of any point in the body. Similarly, if I look at the difference 

between say two other points, the difference between the firm black line and the firm red line 

that is our u v and w. 

So, it is at this point and these are other points. They are not shown in the same point. There 

are  shown at different points. So, there is u v w that is the displacement that it experiences 

under the application of this load and on top of that deformed shape if I give some 

perturbation and then this is nothing, but a variation of this displacement and that is delta of 



this. So, these are called virtual displacement, which is nothing, but variation of displacement. 

 

Now, as we said that at that point where our functions have specified values, the variation 

should be 0. So, we can see here that here we have some boundary conditions. So, our virtual 

displacement or the variation of this u v w, they are not violating the boundary conditions. 

So, they are 0 here. So, these are consistent with boundary conditions to be more specific we 

can say that they are consistent with essential boundary conditions or geometric boundary 

conditions. 

So, they are consistent with essential boundary conditions which we also call as geometric 

boundary conditions.  Now, during this virtual displacement from u v w to the delta of u v w. 

the external work  can be considered to do some work. So, the work done by them is if I take 

the x component of P1 and I multiply by the x component of the virtual displacement which is 

u. Similarly, if I take the y component of P1 and multiply that by v and if I take the z component 

of P1 and multiply that by w and if I sum them up that gives me the total work done by this P1 

and accordingly I can sum it up for all the forces and that is called external virtual work. 

So, for the external virtual work is P1x, the component of P1 along x multiplied by del u at 

point 1 here. Please remember this u v w and delta of u v w we have written them at different 

points, but where I am specifically saying at which point they are specified I am taking a 

subscript that is 1 which means at this point plus P1y delta v1 plus P1z delta of w1.  Similarly 

P2x delta of u2 plus P2y multiplied by delta of v2 plus P2z multiplied by delta of w2 and I can 

keep doing it all the way up to the nth force. So, that is our external virtual work. Now 

similarly there is something called internal virtual work. 

Internal virtual work means it has stress components sigma xx, sigma yy, sigma zz and all the 

shears and the corresponding strains. So, suppose that under this deformed configuration, 

this red line the stresses are sigma and when it goes from this red line to this dotted black 

line which means during this virtual displacement, it gets additional strain which is the virtual 

strains and let us denote them as delta of epsilon.  So, if I denote these as displacements, the 

corresponding strains there are epsilon xx, epsilon yy, epsilon zz. Similarly we have gamma 

xy, gamma yz and gamma zx and accordingly we have, so, let us call it as epsilon and 

accordingly we can have the variation of the strains which are the virtual strains. So, these 

are strains which it has in this red configuration and these are virtual strains which come 

when it goes from the red configuration to the dotted black configuration. 

 

So, the internal virtual work done is if I now stress-strain and they are all point functions.  So, 

I have to define at point and then we have to integrate over the whole body. So,  integrate 

over the whole volume V, here V is our volume integral of this quantity. So, we take normal 

stress along x and multiply with the corresponding virtual strain. Similarly, normal strain 

along y multiply with the corresponding virtual strain plus normal strain along z and multiply 

with the corresponding virtual strain and then the corresponding shears are to be consistent 

with what I wrote just now. 



𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑤𝑜𝑟𝑘

= ∫(𝜎𝑥𝑥𝛿𝜀𝑥𝑥 +

 

𝑉

𝜎𝑦𝑦𝛿𝜀𝑦𝑦 + 𝜎𝑧𝑧𝛿𝜀𝑧𝑧 + 𝜏𝑦𝑧𝛿𝛾𝑦𝑧 + 𝜏𝑧𝑥𝛿𝛾𝑧𝑥 + 𝜏𝑥𝑦𝛿𝛾𝑥𝑦) 𝑑𝑉  

Let me call it zx it does not matter. Stress is symmetric for us. So, zx and xz are same. So, these 

are our internal virtual work.  
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Now, just to show it graphically, suppose, let us take one of the components, may be let us 

take a simple one dimensional case say we  have only epsilon xx and sigma xx and let us 

suppose that the stress-strain  variation is something like this. Now, this virtual work 

principle is applicable even when the virtual property is non-linear. So, just that is why to be 

more generic I drew a non-linear curve here. So, let us say that under the deformed 

configuration or deformed stable configuration this is the amount of strain stress and strain 

produced.  Then if I perturb it further if I get the additional virtual displacement, it gets some 

additional displacement and because of this, the curve continues further may be like this. 

So, suppose this additional part that we have is our virtual strain and at this strain may be the 

stress is this. So, the internal virtual work is this quantity. If I take sigma here which is our 

sigma at the stable equilibrium and then if we multiply that by delta of epsilon xx whatever 

we get here in this rectangle the area of this rectangle is our internal virtual work. And then 

we do it for all the stress and strain components and then we integrate over the volume and 

then we get the total internal virtual work.  So, the principle here says that total external 

virtual work is equal to total internal virtual work and this holds when it is under equilibrium. 



So, if some displacement condition satisfies this virtual work principle that is also an 

approximate solution of the governing differential equation. So, instead of solving directly the 

governing differential  equation in many cases, we just satisfy the virtual work principle in an 

approximate way  and that helps us get get a very close solution of the problem.  Now, we will 

talk about another principle that is potential energy principle and the virtual work principle. 

They  are very closely related. Here we define something called total potential energy, pi of 

the entire body and that has two components U and V where U is the strain energy and that 

is also total and this is potential of the applied load. 

Now, for this problem if I want to look at the expression for the total potential energy, this 

comes to be this pi is equal to half integrated over the volume sigma xx multiplied by epsilon 

xx half into stress into strain for all the components.  So, we have all the shear and normal 

components. So, this is my total potential energy U. Now  please understand this expression 

can be written only when the behaviour is linear. For this kind of non-linear material 

behaviour, this we cannot write. 

𝜋 =
1

2
∫(𝜎𝑥𝑥𝜀𝑥𝑥 +

 

𝑉

𝜎𝑦𝑦𝜀𝑦𝑦 + 𝜎𝑧𝑧𝜀𝑧𝑧 + 𝜏𝑦𝑧𝛾𝑦𝑧 + 𝜏𝑧𝑥𝛾𝑧𝑥 + 𝜏𝑥𝑦𝛾𝑥𝑦) 𝑑𝑉

− (𝑃1𝑥𝑢1 + 𝑃1𝑦𝑣1 + 𝑃1𝑧𝑤1 + ⋯ … … + 𝑃𝑛𝑥𝑢𝑛 + 𝑃𝑛𝑦𝑣𝑛 + 𝑃𝑛𝑧𝑤𝑛) =  𝑈 + 𝑉 

So, the virtual work principle is more robust we can say and this we can write only for linear 

material behaviour.  And for the potential of the applied load again we can write P1x 

multiplied by u1 plus P1y multiplied by v1, plus P1z multiplied by w1 and all the way up to 

Pnx multiplied by un plus Pny multiplied by vn plus Pnz multiplied by wn. So, the first term 

quantity is our u, the strain energy and the second quantity is our potential of the applied 

load.  And again, this quantity is for linear elastic material behaviour. 
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Now the principle says that for this to be in equilibrium 𝜋 should be extremum which means 

either it should have minima or maxima. 

And that means, the variation of pi should be 0 and u v and w should be such that the variation 

of pi is 0 which means it is an extremum. Now when pi is minima it means it is in stable 

equilibrium and when pi is maximum this means that it is in unstable equilibrium. So, we can 

enforce this virtual work condition or the energy condition, but this energy equation is 

limited to this linearly elastic material. So, we can impose this condition and we can find the 

solution where our structure is in equilibrium and stable or sometimes we want to find some 

unstable solution also.  We would not do it here and that is also possible using this. 

So, with that I would like to conclude this lecture here. I will see you in the next lecture.  

Thank you. 


