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Welcome to the fourth video of week 3.   

We started with the block force method, and we looked at one of the cases using this 

method. Now, we will talk further about that case.   

We saw that, the strain that we got in the beam. Now, here is the strain in the beam; because 

the strain is found out only in the beam, we are denoting it as epsilon b, but it has only 

epsilon zero component, which means only the axial component under the extensional case, 

and that is equal to EAc by EAc plus EAb multiplied by epsilon p.  

𝜀𝑏 = 𝜀0 =
𝐸𝐴𝑐

𝐸𝐴𝑐 + 𝐸𝐴𝑏
𝜀𝑝 

And if we recall, we got the same expression for the pure extension case in previously also 

when we were dealing with the Euler Bernoulli beam-based method. 

So, the block force assumption does not alter the result here. Later on, we will see that 

when we talk about bending, the result gets changed. Now, before going to bending, one 

more thing: it is finding out the displacement because of this kind of strains. So, again, it 

is the same thing. If we find out the displacements because the strains are the same, the 

results would also be similar. u would be zero, when my x is less than x-zero. And u is 

going to be EAb plus EAc multiplied by x minus x-zero when it is seen. And u is going to 

be multiplied by lC when x is greater than x-zero plus lC. 

𝑢 = 0                                              0 < 𝑥 < 𝑥0           

𝑢 =
2𝐹𝑏𝑙

𝐸𝐴𝑏 + 𝐸𝐴𝑐

(𝑥 − 𝑥0)           𝑥0 ≤ 𝑥 ≤ 𝑥0 + 𝑙𝑐 

𝑢 =
2𝐹𝑏𝑙

𝐸𝐴𝑏 + 𝐸𝐴𝑐
𝑙𝑐                        𝑥 > 𝑥0 + 𝑙𝑐            

 

 



So, here we are finding out the strains, and we are integrating the strain as we did before 

with the boundary conditions, and we get our displacements at different parts of the 

structure as this. Now, we will go to the next case, where we will see a bending effect.    
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So, this is a pure bending case. And again, here, the actuation is the opposite: if it is plus 

here, it is minus here. If it is minus here, it is plus. So, if the top piezo tries to shorten in 

length, it will experience a tensile force, and the top part of the beam will experience a 

compressive force. On the other hand, because the actuation is opposite, the bottom part of 

the beam will experience a tensile force, and the bottom piezo would experience a 

compressive force and that would give to bending in this fashion. In the contrary, if the 

actuation is just the opposite, then the top piezo would experience a compressive force, and 

the top part of the beam would experience a tensile force, and the bottom part it would be 

the opposite. And in this case, it would result in this kind of bending. And everywhere, the 

force is just F. 

So, needless to say, when these forces are opposite, the net force is zero, but it will induce 

a bending moment. So, it is a bending case. So, again, we will apply the same logic. We 

will find out the displacements here, and we will apply the compatibility condition that the 

displacement and the piezo and the displacement of the beam are the same. But here, 

because it is a bending case, the displacements of the beam along z are not the same. So, 

the displacement here and displacement here are different. So, the displacement here 

should be equal to the displacement here and the piezo. And similarly, the displacement 

here at the beam should be equal to the displacement here from the piezo side. 



Let us assume that these forces are inducing a bending moment M. Now, because of that 

bending moment M, the strain here is M divided by Ib, the moment of inertia of the beam, 

multiplied by this distance: the distance from the middle to the top. So, it is tb by two. So, 

if the entire thickness is tb from z equal to zero to the top part of the beam, it is tb by two. 

So, M by EIb into tb by two multiplied by one by Eb, that is our strain at the top with a 

negative sign, as per our convention. Now, bending moment: if the force here, the bending 

moment is F into tb. So, our bending moment is F multiplied by tb. So, we can replace M 

by F, and the expression becomes this. So, that is our strain at the top fiber of the beam.  

𝜀𝑏
𝑠 = −

𝑀

𝐼𝑏
(

𝑡𝑏

2
)

1

𝐸𝑏
= −

𝐹

𝐸𝑏𝐼𝑏
(

𝑡𝑏
2

2
) 

If the strain there is this, the change in length of this portion of the beam is delta lb, which 

is equal to that strain multiplied by lc. So, which is this. Now similarly, we have to consider 

the change in length of the piezoelectric actuator. 

Δ𝑙𝑏 = 𝜀𝑏
𝑠𝑙𝑐 = −

𝐹

𝐸𝑏𝑙𝑏
(

𝑡𝑏
2

2
) 𝑙𝑐 

So, the piezoelectric actuator is under a force F. Again, applying the same procedure that 

we did before, we can find out delta lc. And delta lc, here is this.  

Δ𝑙𝑐 = (−𝜀𝑝 +
𝐹

𝐸𝑐𝑡𝑐𝐸𝑐
) 𝑙𝑐 = − (𝑑31

𝑉

𝑡𝑐
−

𝐹

𝑏𝑐𝑡𝑐𝐸𝑐
) 𝑙𝑐 
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Now, again, we can equate these two, and after equating, we get our F as this. Solving, we 

get the force. The force is this.  

𝐹 =
𝑑31

𝑉
𝑡𝑐

(
𝑡𝑏

2 2⁄
𝐸𝑏𝐼𝑏

+
1

𝑏𝑐𝑡𝑐𝐸𝑐
)

= (2𝑑31

𝑉

𝑡𝑏
2𝑡𝑐

)
𝐸𝐼𝑏𝐸𝐼𝑐

(𝐸𝐼𝑏 + 𝐸𝐼𝑐)
= 𝐹𝑏𝑙

𝐸𝐼𝑏

(𝐸𝐼𝑏 + 𝐸𝐼𝑐)
= 𝐹𝑏𝑙

𝐸𝐴𝑏

(𝐸𝐼𝑏 + 𝐸𝐼𝑐)
 

Here, this expression is further compacted in terms of EIb EIc.  EIb is the bending stiffness 

of the beam itself, and EIc is the combined bending stiffness of the two actuators. So, while 

calculating the bending stiffness of the actuators, we make some simplifications here. If 

this is our beam section with the two actuators, then while finding out the moment of inertia 

with respect to the midline of the beam, what we do is: we first find out the moment of 

inertia of the piezo patch with respect to its own centroid and then shift it here. 

𝐸𝐼𝑏 = 𝐸𝑏𝐼𝑏 = 𝐸𝑏𝐴𝑏 (
𝑡𝑏

2

12
) 

𝐸𝐼𝑐 = 2(𝑏𝑐𝑡𝑐) (
𝑡𝑐

2
)

2

𝐸𝑐 = 𝐸𝐴𝑐 (
𝑡𝑐

2
)

2

 

Now, the moment of inertia with respect to its own centroid for a piezoelectric patch can 

be negligible when the patch thickness is quite small. So, under that assumption, we remove 

that term and retain only the term which we get by shifted to the midline of the beam by 

the parallel axis theorem. So, only we retain that term. And then again, it can be written as 

this. So, with these two, we can write the force in terms of the block force as this. And 

again, there is a relation between the EIb and EAc. And from that, we can again rewrite the 

expression in terms of EAb and EAc.  
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After that, we have to calculate the actuation moment. The actuation moment is: the 

actuation force multiplied by tb and from that, we get this expression for the actuation 

moment. 

So, this is our Mbl block moment because Fbl into tb is our block moment. So, the moment 

is equal to force, F multiplied by the tb, and Mbl is equal to Fbl multiplied by the tb. These 

are block moments to say. So, this we can term as block moments analogous to block force. 

And again, we can replace EIb and EIc by EAb and EAc.  

𝑀 = 𝐹𝑡𝑏 = 𝐹𝑏𝑙𝑡𝑏

𝐸𝐼𝑏

(𝐸𝐼𝑏 + 𝐸𝐼𝑐)
= 𝑀𝑏𝑙

𝐸𝐼𝑏

(𝐸𝐼𝑏 + 𝐸𝐼𝑐)
= 𝑀𝑏𝑙

𝐸𝐴𝑏

(𝐸𝐴𝑏 + 𝐸𝐴𝑐)
 

𝑀𝑏𝑙 = 𝐹𝑏𝑙𝑡𝑏 

Now, for pure bending actuation, the axial beam strains very linearly across the beam, and 

therefore, we can write the strain as this. So, this is our strain epsilon b and epsilon b as we 

know it is: we can find out from the standard formula moment divided by EIb into z, and 

that gives us our strain at any z from these findings. 

𝜀𝑏 = −
𝑀

𝐸𝐼𝑏
𝑧 = −

𝑀𝑏𝑙

𝐸𝐼𝑏 + 𝐸𝐼𝑐
𝑧 
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Now, from that, we can find out the moment at the top surface of the beam. So, if this is 

our beam, so, and here it is tb by two, here it is tb by two. So, this is the beam without 

showing the actuator. If I want to find out the strain here, we just replace z by minus tb by 

two, and we get the moment here in terms of both EIc and EAb.  

𝜀𝑏
𝑠 = −

𝑀𝑏𝑙

𝐸𝐼𝑏 + 𝐸𝐼𝑐
(

𝑡𝑏

2
) = −𝜀𝑝

𝐸𝐼𝑐

𝐸𝐼𝑏 + 𝐸𝐼𝑐
= −𝜀𝑝

3𝐸𝐴𝑏

(𝐸𝐴𝑏 + 3𝐸𝐴𝑐)
 

Similarly, when we want to find the same thing at the bottom surface, we just replace z. 

Here, we replace z by tb by two, and we get this. And for here, we replace z by minus tb by 

two, and we get our strains at the bottom surface.  

𝜀𝑏
−𝑠 = 𝜀𝑝

3𝐸𝐴𝑏

(𝐸𝐴𝑏 + 3𝐸𝐴𝑐)
= 𝜀𝑝

𝐸𝐼𝑏

(𝐸𝐼𝑏 + 𝐸𝐼𝑐)
 

So, strain here at the top surface, and strain here, strain here at the bottom surface, and we 

get the two strains at the two extreme surfaces. 
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Again, for some extreme cases, we will see how it behaves. So, when we have our EIc 

much greater than EIb. In that case, our block moment is zero. So, if we look at this 

expression, this term becomes zero when EIc is much bigger than EIb. So, this term is 

almost zero. This term is almost zero means, the piezoelectric patches can expand or 

contract freely, and that we can see here. So, epsilon b at the top surface is minus epsilon 

p and epsilon b at the bottom surface is epsilon p. 

When Flexural rigidity, 𝐸𝐼𝑐 ≫ 𝐸𝐼𝑏   

𝑀 ≈ 0                      𝑀 = 𝑀𝑏𝑙

𝐸𝐼𝑏

(𝐸𝐼𝑏 + 𝐸𝐼𝑐)
 

𝜀𝑏
𝑠 ≈ −𝜀𝑝

𝜀𝑏
−𝑠 ≈ 𝜀𝑝

                   𝜀𝑏
𝑠 = −𝜀𝑝

𝐸𝐼𝑐

(𝐸𝐼𝑏 + 𝐸𝐼𝑐)
 

When Flexural rigidity, 𝐸𝐼𝑐 ≪ 𝐸𝐼𝑏   

𝑀 ≈ 𝑀𝑏𝑙 

𝜀𝑏
𝑠 ≈ 0

𝜀𝑏
−𝑠 ≈ 0

 

In the reverse case, when EIc is much less than EIb, in that case, the movement of the 

piezoelectric patches are almost constrained. In that case, the moment is equal to almost 

the block moment, and the piezoelectric patches do not experience any strain.  
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Now, once we know the moments here in terms of the block moments or the free strains, 

we can find out how the beam deforms. So, this is how it is. We already saw, how to solve 

these problems. And if we just follow the procedure, if we follow the governing differential 

equation that is EI del two W del x two is equal to M. Here we have to put the appropriate 

E.  So, here we will put EIb because we already know what moment the beam is 

experiencing and, in this method, we do all the calculations for the displacement 

considering EIb. And M, we know in terms of the block moment. We can write it in terms 

of the block force or the free strain also, and then we can solve the differential equation. 

Put the corresponding boundary conditions and solve it. After solving it, we can see that in 

this region, the slope is zero. In this region, the slope is this, and in this region, the slope is 

this. 

𝑥 < 𝑥0

𝜕𝑤

𝜕𝑥
= 0

𝑥0 < 𝑥 < 𝑥0 + 𝑙𝑐

𝜕𝑤

𝜕𝑥
= (

𝑀𝑏𝑙

𝐸𝐼𝑏 + 𝐸𝐼𝑐
) (𝑥 − 𝑥0)

𝑥 > 𝑥0 + 𝑙𝑐

𝜕𝑤

𝜕𝑥
= (

𝑀𝑏𝑙

𝐸𝐼𝑏 + 𝐸𝐼𝑐
) 𝑙𝑐

  
𝑥 < 𝑥0 𝑤 = 0

𝑥0 < 𝑥 < 𝑥0 + 𝑙𝑐 𝑤 =
𝑀𝑏𝑙

𝐸𝐼𝑏 + 𝐸𝐼𝑐

(𝑥 − 𝑥0)2

2

𝑥 > 𝑥0 + 𝑙𝑐 𝑤 =
𝑀𝑏𝑙

𝐸𝐼𝑏 + 𝐸𝐼𝑐
[
𝑙𝑐

2

2
+ 𝑙𝑐(𝑥 − 𝑥0 − 𝑙𝑐)]

 



When finding out displacement, we see that in this region, displacement is zero. In this 

region, displacement is this, and in this region, displacement is this. So, before concluding 

the discussion on this beam problem, we would see that the result that we get for the beam 

problem using the block force method would turn out to be somewhat different from what 

we get by solving the Euler boundary beam-based technique. Because here, we are making 

an assumption, the assumption is that if we talk about this section only, it has a piezo at the 

top and at the bottom. So, when this bends, it bends in this fashion. And as per the Euler 

boundary beam, we saw that the top part of the piezo part also bends, which means the 

strain is changing in the piezo part as we go along the thickness of the piezo. However, in 

the block force method, our piezo strains are the same along the thickness. So, this 

variation, we are ignoring in our block force method. 

So, that is why it gives some difference in the results. And in fact, if we see that: if we want 

to make our piezo behave in such a way that its strain is the same, that is not very much 

feasible physically. So, that is a big assumption in the block force base method. And that 

is why, although the result was the same in extension, because, in extension or contraction, 

it does not matter if this kind of bending does not come into the picture. But in the bending 

case, the results are different.  

(Refer Slide Time: 17:21) 

 

Now, here the axial strains are calculated in the same way the axial stresses can be 

calculated. So, in the first part of the beam where the actuator is not here, the stress is zero. 

In the mid part, I mean under the actuator part, there is some stress, and after that, again, 

the stress is zero. And similarly, the strain is also zero at the first part without the actuator, 



and then, there is some strain. And at the other part, which is free from the actuator, again, 

the strain is zero. And this is calculated here at the top part. 

𝑥 < 𝑥0 𝜎𝑏 = 0
𝑥0 < 𝑥 < 𝑥0 + 𝑙𝑐 𝜎𝑏 = −

𝑥 > 𝑥0 + 𝑙𝑐 𝜎𝑏 = 0

𝑀𝑏𝑙𝐸𝑏

𝐸𝐼𝑏 + 𝐸𝐼𝑐
𝑧 

So, if you want to be generic and write it in terms of any z. So, it is Mbl by EIb plus EIc 

multiplied by z. And this is for the top surface. And this is for any z.  

𝑥 < 𝑥0 𝜀𝑏
𝑠 = 0

𝑥0 < 𝑥 < 𝑥0 + 𝑙𝑐 𝜀𝑏
𝑠 = −

𝑥 > 𝑥0 + 𝑙𝑐 𝜀𝑏
𝑠 = 0

𝑀𝑏𝑙

𝐸𝐼𝑏 + 𝐸𝐼𝑐
(

𝑡𝑏

2
) = −

𝑀𝑏𝑙

𝐸𝐼𝑏 + 𝐸𝐼𝑐
𝑧 
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Now, similarly, we look into the case of unequal electric voltage. So, while dealing with 

the Euler Bernoulli beam, we saw the case when what to do when the electric voltages are 

not equal; the same situation comes here. The volt electric voltages may not be equal. In 

these two cases, in the same procedure, we decouple the voltage into Vtop and Vbottom, sorry, 

V1 and V2. And V1 and V2 are in terms of Vtop and Vbottom, are this.  

𝑉1 − 𝑉2 = 𝑉𝑡𝑜𝑝 

𝑉1 + 𝑉2 = 𝑉𝑏𝑜𝑡𝑡𝑜𝑚 

𝑉1 =
𝑉𝑏𝑜𝑡𝑡𝑜𝑚 + 𝑉𝑡𝑜𝑝

2
 



𝑉2 =
𝑉𝑏𝑜𝑡𝑡𝑜𝑚 − 𝑉𝑡𝑜𝑝

2
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And then, for the V1 part, this is the actuation force Fe. Here, E stands for extension. It can 

be an extension or contraction as well. And similarly, for the V2 part, it results in bending. 

So, the corresponding force is Fb, and the corresponding moment is M. And then, from 

here, we find out, we just superimpose Fe and Fb, and we find out the force at the top Ftop, 

and the force at the bottom Fbottom. So, if this is our beam, this is along the x-axis, and this 

is the z-axis, we have the piezo somewhere here, maybe.    

𝐹𝑒 = 𝐹𝑏𝑙1

𝐸𝐴𝑏

𝐸𝐴𝑐1 + 𝐸𝐴𝑏
= 𝐹𝑏𝑙1

𝐸𝐴𝑏

𝐸𝐴𝑐 + 𝐸𝐴𝑏

𝐹𝑏𝑙1
= 𝐸𝑐𝑏𝑐𝑡𝑐𝜀𝑝1

= 𝐸𝐴𝑐

𝜀𝑝1

2
=

𝑑31𝑉1

2𝑡𝑐
𝐸𝐴𝑐

 

𝐹𝑏 = 𝐹𝑏𝑙2

𝐸𝐼𝑏

𝐸𝐼𝑏 + 𝐸𝐼𝑐
= 𝐹𝑏𝑙2

𝐸𝐴𝑏

𝐸𝐴𝑐 + 𝐸𝐴𝑐

𝐹𝑏𝑙2
=

𝑑31𝑉2

2𝑡𝑐
𝐸𝐴𝑐

 

𝑀 = 𝑀𝑏𝑙2

𝐸𝐼𝑏

𝐸𝐼𝑏 + 𝐸𝐼𝑐
=

2𝑑31𝑉2

𝑡𝑏𝑡𝑐

𝐸𝐼𝑏𝐸𝐼𝑐

𝐸𝐼𝑏 + 𝐸𝐼𝑐
 

Total force on the top surface, 𝐹𝑡𝑜𝑝 = 𝐹𝑒 − 𝐹𝑏 



Total force on the bottom surface, 𝐹𝑏𝑜𝑡𝑡𝑜𝑚 = 𝐹𝑒 + 𝐹𝑏 

Let us assume that the forces are in this form, but they are different. So, this can be written 

as Ftop. This can be written as Fbottom or vice versa. The sign also may change. And Ftop and 

Fbottom, they are not same. They can be different in terms of their directions also and 

magnitude wise also they can be different.  
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So, with that, I would like to finish this lecture here.  

In the next lecture, we will look at the other cases using the block force method.  

Thank you. 


