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Welcome to the third lecture of week 3.  

We are talking about Induced Strain Actuation and its analysis for a one-dimensional beam 

and the analysis was static analysis. And we started with the Euler Bernoulli Beam method. 

We looked into few cases and here we will see one more case. Now the beam is again fitted 

with. It has two actuators at the top and bottom and they are similar actuators, but the voltage 

applied is different. 

So, the voltage at the top and voltage at the bottom is different. So, they can be same direction 

wise. They can be opposite in direction, but their magnitude are different and that creates a 

lot of difference. So, it would induce both extension and bending. 

So, what we can do is, we denote the voltage at the bottom as V bottom and the voltage at the 

top as V top. Now, what we do is, we decouple these voltages into a pure bending and pure 

axial case. So, we assume that there is a voltage V₁ and same voltage V₁ and there is voltage 

V₂ and a voltage minus V₂. So, V₁ and V₁ they induce pure extension or pure contraction and 

V₂ and minus V₂ they induce pure bending and their combination gives us the actual voltage 

V top and V bottom. So, when we superimpose these two, we get the V bottom and V top. 



So, V₁ plus V₂ is equal to V bottom as per our consideration and V₁ minus V₂ is equal to V top 

which is shown here. Now if we solve these two equations, we get V₁ and V₂ in terms of V top 

and V bottom. So, V top and V bottom are given to us. V₁ V₂ we do not know. So, by solving 

this we get V₁ and V₂ in terms of V top and V bottom. 

So, this is what is going to cause a pure axial effect and this is what is going to cause a pure 

bending effect. So, as we have decoupled the problem, now we can solve this problem 

separately as we have solved the pure axial problem and we can solve this problem separately 

as we have solved for the pure bending problem. So, for the axial problem we can find out Np. 

Np becomes 2 multiplied by Ec, Bc, tc into epsilon P1 epsilon P1 is the free stress 

corresponding to voltage V₁ free strain corresponding to voltage V₁ and this epsilon P1 is in 

terms of V1 d₃₁ multiplied by V₁ by tc. This is the actual trafficness and this can be written as 

EA total into epsilon 0 which we have been doing so far. 

So, by solving this equation EA total epsilon 0 is equal to this Np where Np is this we can find 

out epsilon 0. Now you find out Mp. Mp is Ec, Bc, tc, tc plus tb epsilon P2. So, epsilon P2 is free 

strain corresponding to voltage V₂. So, we have epsilon P here we have the opposite epsilon 

P here and that creates a moment and if you find out that moment we get this. 

So, the corresponding to this epsilon P2, we find out the moment here. So, we have to have 

this elastic modulus and that should be equal to EI total multiplied by kappa and if we solve 

this equation EI total multiplied EI total kappa is equal to Mp we can find out kappa. So, if we 

separately find out epsilon 0 and kappa and then we can superimpose the results and that 

would give us the actual solution.  
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Now, we look into another problem where we have asymmetric actuation. It is asymmetric 

because although we have two piezoelectric patches, but their thickness are different. So, this 

thickness we may call as tcb bottom and this thickness can be called as tc top. Now even if it 

is actuated with same voltage at top and bottom, piezo free strains can be different because 

if you look at the expression of the free strain, there is tc sitting at the denominator. So, that 

would make the free strain different. So, to solve this problem again if we look at the cross 

section, the cross section can look like this. To solve this problem we take z is equal to 0 at 

the mid of the beam. So, EA total becomes Ec Ac top. Ec is elastic modulus of the top piezo, Ac 

top is the area of the top piezo. So, Ac top is bc into tc top. So, Ac top is bc into tc top and Ac 

into Ac bottom where Ac bottom is bc into tc bottom. Their width is same. 

So, both are bc and then we have Ab area of this beam section which is bb into tb and now we 

find out ES total. Now as this section is not symmetric with respect to this line, this z equal to 

0-line, ES total is not going to be 0. This is going to be nonzero. So, we have some ES total 

which is nonzero and that is this and then we find out the EI total again with respect to this 

line. So, in the EI total this is the contribution from the bottom piezo from the top piezo and 

from the beam. So, we found out our EA total, ES total and EI total and because the section is 

not symmetric ES total remains here.  
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Now we find out our Np and Mp in the similar process that we have adopted so far we can 

find out our Np. So, this is the Np and although the top and bottom voltage are same. So, just 

to show, it has been separately V top and V bottom and Mp is this. So, you find out the moment 

with respect to the z equal to 0 line and that becomes our Mp. Now when V bottom and V top 

is equal to V, we get this as our Np and this as our Mp and finally, this is the equation that we 



have to solve. Here because ES total are nonzero, so, these two equations are coupled and by 

solving this coupled equation, we can find our epsilon 0 and kappa.  
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Now in this case again we have dissimilarity, but here the dissimilarity in terms of the d 31. 

So, the d 31 at the bottom piezo and top piezo are not same. So, again we can say that under 

same voltage, free strain can be different at the top and bottom piezo can be different. 

So, epsilon p top is the free strain at the top piezoelectric patch which is this epsilon p bottom 

is the free strain at the bottom piezoelectric patch which is this. Np the axial force 

corresponding to the free strain we can get in the similar fashion and Mp the bending moment 

corresponding to the free strain. Again we can get in the similar fashion. So, this is what we 

get as Np and Mp and then after that finally, the equation looks like this.  
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Now here one thing to note is that, we would find out ES total, EA total and EI total in the 

same way. Now the two pieces are different. So, if Ec top is equal to Ec bottom in that case ES 

total is going to be 0 because the section becomes symmetric in terms of the elastic 

properties, but when Ec top is not equal to Ec bottom, ES total is a nonzero value. So, in that 

case we have to solve the coupled equation if ES total is 0 then we can get rid of these two 

terms and two equations get decoupled like this and if they are not same, then we have to 

solve the coupled equations. So, this leads to this situation and this leads to this situation. So, 

with that our static analysis under induced strain for one dimensional case using the Euler 

Bernoulli beam technique is finished. 
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Now we will go to our next technique called the Block force phase method. Block force phase 

method is a very approximate method. It is highly approximate and it has some more 

assumptions. So, first of all it is highly approximate. It considers the effect of the actuators as 

line forces and variation of stress strain along the length or thickness of the piezoelectric 

actuator is neglected. So, the stress strain along the length and thickness is assumed to be 

same and effect of this actuator is considered as a line force. We will see that in the next slide.  
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Again we look into those same cases that we did for the Euler Bernoulli beam based 

technique. So, the first is a extension case as we know. They are actuated with same voltage. 

Now if the actuation is such that this piezo contracts both the piezo, that is why the 

piezoelectric patch is under tensile force and the beam is under compressive force and it 

happens for both the top and bottom piezo and all these forces have same magnitude F. In 

these problems, the unknowns are our F's which we if we can find those we can solve the 

problem. The case can be reverse the actuation can be such that the piezoelectric patch tries 

to expand. If the piezoelectric patch tries to expand the effect just becomes reverse the 

piezoelectric patch experiences a compressive force and the beam experiences tensile force 

similarly here and here and again the magnitudes are we denote as F. So, as I said in this 

approach our unknown is F and we try to find F by imposing the condition that the 

displacement at these junctions between the piezoelectric patch and the beam is same. 

The compatibility of displacement we impose and by imposing that condition, we try to find 

out our unknown actuation force F. So, if we try to do it for the pure extension case, we have 

to find out the axial deflection of the beam, I mean the expansion of the beam, I would say, or 

the contraction at the junction between the piezoelectric patch. Now it is because it is axial 

effect, so, the effect is same whether at the top junction or the bottom junction or in between 

those. It does not matter everywhere it experiences same expansion or contraction and that 

is denoted as delta lb. Now, delta lb is if we see we have a force F and we have force F. 

So, the total force experienced by the beam at here is 2 F. So, if we divide this 2 F by this area 

of the beam which is Ab that gives us the stress and then if I divide by the elastic modulus of 

the beam that gives me the strain and because the strain is same in this actuated zone, so, we 

can just multiply this by lc the length of that actuated zone and that gives me of my expansion 

or contraction of the beam that is delta lb. Now I can replace Ab by bb tb and this is my full 

expression for the expansion or contraction of the beam or the axial deflection of the beam. 

Now we need to find out the length of change of piezo actuators. So, for the piezo electric 

actuators, the change in length is this epsilon p minus F by bc tc Ec multiplied by lc which we 

can verify here. We know that the stress in the piezoelectric patch is Ec multiplied by epsilon 

minus epsilon p. Now epsilon is the stress. To get the stress, we have to get it from the force 

from this force F. Now we are denoting the force in the beam as F. 

So, in the actuator it is minus F. So, it is minus F divided by bc tc is equal to Ec epsilon minus 

epsilon p and then by solving this we get the expression as epsilon is equal to epsilon p minus 

F by bc tc Ec. Now if this is my epsilon p from here I can find out the changing length we just 

have to multiply with lc. So, we get delta lc is equal to lc multiplied by epsilon and that is equal 

to lc the entire thing multiplied by epsilon minus F by bc tc Ec. So, this is what we can see here 

and then epsilon p can be written as V by tc and this is our final expression for change in 

length of the piezoelectric actuators. Now that we have found out the change in length of the 

beam and change in length of the actuators. 

We have to apply the condition of compatibility. So, we apply the condition here. These our 

compatibility condition or compatibility of displacement and that says that delta lb is equal 



to delta lc. Delta lb is equal to delta lc. Delta lb is taken from here. Delta lc is taken from here 

and they are equated.  

𝜀 = 𝜀𝑝 −
𝐹

𝑏𝑐𝑡𝑐𝐸𝑐
 

∆𝑙𝑐 = 𝑙𝑐𝜀 = 𝑙𝑐(𝜀𝑝 −
𝐹

𝑏𝑐𝑡𝑐𝐸𝑐
) 
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And after equating those, we get F as this. Now this expression can be written in a more 

compact way. So, we take V by tc by 2 here and here I have E Ab E Ac EAb plus EAc where EAb 

is the area of cross section of the beam and EAc is the combined area of cross section of the 2 

actuators. So, 2 Ec Vc tc, I mean, it is EAc. So, apart from area we have to factor it by elastic 

modulus also. So, they are here. Now dc Vc by tc is my epsilon p say epsilon p divided by 2 

and this remain same and then we can write this entire thing as in terms of the block force 

also. We know that block force is Fbl is equal to epsilon p multiplied by tc bc into Ec and tc bc 

is the area of one actuator. So, tc bc Ec can be written as EAc divided by 2. 

So, epsilon p is equal to twice Fbl by EAc. If we put it here then the expression in terms of 

block force becomes this. So, this is our actuation force in terms of the free strain or in terms 

of the block force. Once we get our actuator force we know everything. Now we can find out 

how the beam response to the actuation. So, if we just go back to the previous slide after we 

know the actuation force. So, the actuation force acts here then. So, this beam is under force 

twice F. So, twice F divided by the area is our stress and that divided by its elastic modulus is 



the strain. So, it is Eb beam elastic modulus and then again it can be further simplified in terms 

of either epsilon p or Fbl.  

𝐹𝑏𝑙 = 𝜀𝑝𝑡𝑐𝑏𝑐𝐸𝑐 = 𝜀𝑝
𝐸𝐴𝑐

2
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Now that we know the expressions for the force and the strain, we can see some extreme 

cases now. If our EAc is much more than EAb then this expression for block force if EAc is 

much more than EAb then this expression becomes 0. 

This tends to 0. So, block force becomes 0 and when block force is 0 which means the actuator 

is expanding freely and that is also evident from the expression for epsilon b. If I put the 

condition that EAc is much greater than EAb then this tends to be 1. In that case epsilon b 

becomes epsilon p. So, here because piezo stiffness is much higher than the beam stiffness, 

so, the piezo experiences less resistance by the beam or the bar. So, it can expense in its own 

way. So, it does not feel any obstruction. That is why the block force is 0 and it expense freely. 

So, the strain is equal to the free strain. In the reverse case when the piezo stiffness is much 

less than the beam stiffness, in that case, it experiences a quite a bit of obstruction by the 

beam. 

So, the force is equal to the block force. So, again if you put the condition that EAb is much 

higher than EAc this becomes 1. Then F becomes Fbl. So, that is what we see here. On the 

other hand when the force is just equal to the block force which means the piezo is not able 

to deform or expand. In that case, epsilon b is equal to 0. So, that is what we see here. So, in 

that case, it is 0. So, this is what we see here. So, these two are the reverse cases the effects 

are opposite.  



Now, with that I would like to conclude this lecture here. In the lecture, we will see some 

development of this case itself and then we move on to some few next cases.  

Thank you. 


