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Welcome to the fifth lecture on Piezoelectric Materials.  

So far, we have derived the constitutive relations of piezoelectric materials and we have seen 

their interrelations.  
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Now, we will talk about how these piezoelectric materials are used as sensors and actuators 

and we will look at some simplified cases. So, a piezoelectric  materials is mostly available in 

most of the applications as this kind of thin sheets. Now, these thin sheets are polarized along 

a certain direction. So, these sheets are mostly polarized along the vertical direction, i.e. 

direction 3. They can be polarized in other  directions also, but what we get is mostly in this 

form and that is what mostly useful  to us. So, the polarization is shown by different marks 

for example, it can be shown as a dot  like that which shows that it is polarized along this third 

direction i.e. z direction.  Now, these sheets are generally isotropic in 1-2 plane which means 

the properties are same in 1-2 plane. So, whatever the elastic  modulus or the other properties 

are there in this direction i.e. in direction 1, it  can be same in direction 2 also, but they are 

not isotropic in other planes i.e. not isotropic  in 1-3 or 2-3 plane. So, with that if you want to 



write the constitutive relation in  this form, then these constants SE and d comes to be like 

that.  So, it is isotropic in 1-2 plane. 

So, S₁₁ is equal to S₂₂. So, we see S₁₁  here also and similarly S₁₃ is equal to S₂₃.  We see S₁₃ 

and S ₂₃ here also and again please understand that these SE are considering that the other  

state variables is electric field. So, better we put a double strokes to be consistent with  all of 

our notation that we have. So, it is all are double stroke is everywhere. Now, similarly these 

are d matrix and in the d matrix also because of its symmetry we have d₃₁ and d₃₂ same and 

d₂₄ and and d₁₅ are same.  

(Refer Slide Time: 05:03) 

 

If we look at this SE matrix in an expanded form it looks like this. So, in terms of the elastic 

modulus of the material this SE matrix can be written. So, these E's are the elastic modulus. 

So, we have now two E's, one E is for elastic modulus and a double stroke E for electric field. 

So, these E's inside this matrix are all elastic modulus and whereas, this E this superscript  is 

considering the fact that in this constitute relation the other state vector is electric  field. So, 

that is why it is a double stroke E. Now, in terms of this elastic modulus in different directions 

the entire SE matrix is written in this way and this is our epsilon sigma matrix. So, this is what 

we can use for these thin piezoelectric sheet materials.   
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So, let us assume that we are using these thin piezoelectric sheets as our actuators. So, this is 

the first case where we have this piezoelectric sheet and it is polarized along z direction and 

this piezoelectric element has electrodes deposited at the top surface and the bottom surface. 

So, along the three axis we have the top surface and at the bottom  surface and at those two 

surfaces electrodes are deposited. So, that we can apply voltage to it.  Now assume that it is 

under electric field E and if that is the case then from the constitutive relation that we are 

supposed to use here is epsilon is equal to SE multiplied by sigma plus dᵀ multiplied by E.  

{𝜀} = [𝑆𝔼]{𝜎} + [𝑑]𝑇[𝔼] 

So, with this relation we can write epsilon 1 is equal to d₃₁ multiplied by E₃. 

𝜀1 = 𝑑31𝔼3 

So, E₃ is the voltage applied. So, because of this voltage applied E₃ it will induce a strain along 

direction 1. Similarly, along direction 2 it will induce another strain and along direction 3 it 

will induce another strain that is d₃₃ into E₃₃.  

𝜀2 = 𝑑31𝔼3 

𝜀3 = 𝑑31𝔼3 

Now please consider the fact that sigma is 0 here because this element is free to expand or 

contract. So, because we are   not restricting its expansion or contraction under the electric 

field it is not going to experience any stress. So, because this is 0. So, we can just solve this 

equation epsilon is equal to dᵀ multiplied by electric field and that gives us this.   

Now let us move to the next case. In this case we are applying a voltage along the second 

direction i.e. direction 2. Now this is possible to apply it, but again for this to happen, we have 



to have electrodes deposited at the 2 faces along direction 2. So, at this face as well as at the 

opposite face. So, at the positive 2 face  and at the negative 2 face we have to have electrodes 

deposited.  Now for this case again applying the same equation we get epsilon 2 we have  we 

get epsilon 4 and we apply electric field 3 here. We get epsilon 4 which is equal to gamma yz 

and that comes to be d₁₅ multiplied by E₂. 

𝜀4 = 𝛾𝑦𝑧 = 𝑑15𝔼2 

And similarly, here we are applying a voltage along E₁ direction again for this to happen we 

have to have electrodes deposited at that face positive and negative face of one direction. And 

under this electric field epsilon 5 which is epsilon zx that is what we get and that is equal to 

d₁₅ multiplied by E₁.  

𝜀4 = 𝛾𝑧𝑥 = 𝑑15𝔼1 

So, these are several modes of actuation and under those different modes of actuation these 

are the different strains that we get.   
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Now we will move to the next discussion that is on estimation of electric charge and voltage.  

Now we will talk about estimation of electric charge and voltage. So, here we are talking about 

direct piezoelectric effect. So, first we will assume that I mean our first  assumption is that 

one stress component  acts at a time just to keep things simple. And from that we will solve 

the equation and finally, by solving the equation we will get the electrical displacement and 

from the electrical displacement we can get the electrical charge and from the charge we can 

find out what is the amount of voltage it is generating. So, charge generated q can be related 



to the electrical displacement component as D₁ D₂ D₃ and that multiplied with this vector and 

integrated over the surface. So, dA₁ dA₂ dA₃ are electrode area in 2-3, 1-3 and 1-2 planes. 

𝑞 = ∫{𝐷1 𝐷2 𝐷3} {

𝑑𝐴1

𝑑𝐴2

𝑑𝐴3

}

 

𝑆

 

Now voltage generated can be related to the charge as q divided by the capacitance Cp.  

𝑉 =
𝑞

𝐶𝑝
 

Now capacitance is found out by treating the patch as a parallel capacitor. So, if these are thin  

piezo sheet which we call piezo patch also and  suppose it is electrodes are deposited here 

and here at the top surface along direction 3 at the  positive and negative surface of the 3 axis. 

Then we can treat this sheet to be a parallel  capacitor and accordingly we can find out the 

capacitance. So, that gives us the expression of capacitance as epsilon 3 d sigma Lc bc divided 

by tc. 

𝐶𝑝 =
𝜀33

𝜎 𝑙𝑎𝑏𝑐

𝑡𝑐
 

So, lc is our dimension over this, bc is our dimension over direction 2 and tc is the thickness 

dimension over direction 3. So, lc bc is the area and tc is the thickness. So, that gives us the  

expression for the capacitance. So, from by solving the constitutive equation I can find  out 

our electrical displacement and from the electrical displacement we can find out the  charge 

by using this equation and if I put the capacitance expression here that gives  us an estimate 

of the voltage generated.  

So, now we look into few cases. 
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So, the first case is this. We have a piezo patch  and these are our directions 1, 2, 3 and suppose 

we are finding out the voltage here  across the 3 directions and this patch is under a normal 

stress sigma and it is polarized  in direction 3. So, in this case by solving the same equation, 

we can get D₃ to be is equal to sigma 1 into d₃₁.  

𝐷3 = 𝜎1𝑑31 

And if I find out the capacitance treating this as a parallel plate capacitor where this surface 

and the opposite surface are my parallel plates. In that case we can find out the expression 

for the capacitance as we saw before and then so, it would be as we just derived epsilon sigma 

and then bc lc by tc.  

𝐶𝑝 =
𝜀𝜎𝑙𝑐𝑏𝑐

𝑡𝑐
 

And from this D3 we can estimate the charge and that is sigma 1 multiplied by d₃₁ which is 

basically capital D3 multiplied by bc lc.  

𝑞 = 𝜎1𝑑31𝑏𝑐𝑙𝑐 

Now, we can put everything here q by Cp and that gives us voltage equal to sigma 1 d₃₁ tc 

divided by epsilon 33 sigma. 

𝑉 =
𝑞

𝐶𝑝
=

𝜎1𝑑31𝑡𝑐

𝜀33
𝜎  

Now we look into another case where we have again a similar piezoelectric patch, property 

wise it is same. It is the same patch, only difference is that the stress is applied in direction 2 

and this is direction 1, this is direction 2 and this is direction 3 and we are measuring the 



voltage across the direction 3. So, everything remains same. Our D₃ is also sigma 1 d₃₁ 

because the plane is isotropic because it is isotropic in the 1-2 plane. Stress is now sigma 2, it 

is not sigma 1 and q is sigma 2 d₃₁ bc  lc and expression for the capacitance remain same.  

𝐷3 = 𝜎2𝑑31 

𝑞 = 𝜎2𝑑31𝑏𝑐𝑙𝑐 

So, finally, voltage becomes sigma 2 multiplied by d₃₁ tc divided by epsilon 33 sigma.  

𝑉 =
𝜎2𝑑31𝑡𝑐

𝜀33
𝜎  
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Now, we will look into few more cases. So, suppose we have again the same piezoelectric  

patch. So, this is direction 1, 2, 3 and then it is under a stress sigma 3 that means, normal  

stress along direction 3. And again the voltage is measured across the third direction i.e. third 

axis. In this case, my D3 expression is sigma 3 multiplied by d₃₃. So, q becomes sigma 3 d₃₃ 

multiplied by lc bc and expression for the capacitance remain same.  

𝐷3 = 𝜎3𝑑33 

𝑞 = 𝜎3𝑑33𝑏𝑐𝑙𝑐 

So, that gives me that voltage is equal to sigma 3 d₃₃ tc by epsilon 33 sigma.   

𝑉 =
𝜎3𝑑33𝑡𝑐

𝜀33
𝜎  
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Next case is somewhat different. So, here we can write here. So, we have again  the same 

piezoelectric patch, but now we are applying a shear. So, the shear is sigma 4 is equal to tau 

zx or we can call it tau₃₁ as per our nomenclature 1, 2, 3 of the axis.  

𝜎4 = 𝜏𝑧𝑥 = 𝜏31 

And, then we have we have sigma 4 and we are measuring the electric field along the axis 1. 

So, here these faces have to have electrodes deposited to measure it and we are trying to 

measure the voltage here. If that is the case, then here we have D₁ is equal to sigma 4 

multiplied by d₁₅.  

𝐷1 = 𝜎4𝑑15 

So, that gives me that q equal to sigma 4 multiplied by d₁₅ bc tc and then we get Cp is equal to 

epsilon 11 sigma multiplied by bc t c divided by lc that is the capacitance and with that we get 

an expression for the voltage as sigma 4 d₁₅ lc by epsilon 11 sigma.   

𝑞 = 𝜎4𝑑15𝑏𝑐𝑡𝑐 

𝐶𝑝 =
𝜀11

𝜎 𝑡𝑐𝑏𝑐

𝑙𝑐
 

𝑉 =
𝜎4𝑑15𝑙𝑐

𝜀11
𝜎  

(Refer Slide Time: 23:58) 



 

Now the last case, for that we have again a piezoelectric patch like this same piezoelectric 

patch only thing is that we are measuring voltage across axis 2 and the stress is this. We have 

sigma 5 applied.  So, sigma 5 is equal to tau 32 yz we which we can call tau 23 as well again it 

is the same thing.  

𝜎5 = 𝜏𝑦𝑧 = 𝜏23 

So, D2 becomes now sigma 5 d₁₅ and our capacitance changes because our voltage is 

measured along direction 1 now.  

𝐷2 = 𝜎5𝑑15 

So, this is our capacitance and voltage become sigma 5 d₁₅ bc by epsilon 22 sigma. So, that is 

about the measuring the voltage or charge.  

𝐶𝑝 =
𝜀22

𝜎 𝑡𝑐𝑙𝑐

𝑏𝑐
 

𝑉 =
𝜎5𝑑15𝑏𝑐

𝜀22
𝜎  
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Now we will talk about another concept that is related to piezoelectric actuation.  Now we 

will talk about actuator load line. So, imagine we have a piezoelectric sheet and our entire 

phenomena are assumed to be one dimensional. 

See if I apply electric field, suppose it is direction 1, this is direction 2, this is direction 3 and 

to keep things simplified we are concerned with direction 1. So, we are giving the actuation 

in direction 3, but we are getting the result in direction 1. Now if we apply electric field along 

this third direction then we see that it will try to expand or contract depending on the 

direction of the electric field and polarization. Now if it  is free to expand or contract then it 

will have a full expansion or contraction and let  us call it delta f maybe. So, that delta f is 

called free displacement and the corresponding strain is called maybe free strain. 

Now if I restrict it from expanding or contracting if we hold it tightly in its place then it would 

try to expand or contract, but it would not be able to. So, it will exert a force to the 

surroundings and the surroundings also  would exert a reaction force to it and that force is 

called the block force. So, that  is the maximum actuation force that we get from the actuator. 

So, when the  force is 0 we get the maximum amount of displacement when the force is 

maximum we  get 0 displacement and in between them it has some variation. Now if our 

actuator is linear then the variation in between them is also linear. 

If the actuator is non-linear and then the variation would be non-linear. We are not going 

there. We are assuming our  actuator is linear. So, it will have a linear variation and this is 

called actuator load line. So, this is for a certain voltage. So, maybe for V1. So, if I reduce the 

voltage  and make it V2. So, at the reduced voltage, my del f will have some reduced value and  

the block force would have some reduced value and if I reduce it further it will again have  

some reduced value or if I increase it will have some enhanced value. So, these are called 

actuator load lines and they are parallel. 



Fbl is called block force. Now if I want to fit a curve to it, so, it  is a straight line. The equation 

can be written as F by Fbl plus delta by delta f equal to 1 and finally, it gives me expression F 

is equal to 1 minus delta by delta f multiplied by Fbl or I can write it as Fbl minus delta into 

Fbl by delta f which we can write as Fbl minus K act into delta.  

𝐹

𝐹𝑏𝑐
+

𝛿

𝛿𝑓
= 1 

𝐹 = (1 −
𝛿

𝛿𝑓
) 𝐹𝑏𝑙 = 𝐹𝑏𝑙 − 𝛿

𝐹𝑏𝑙

𝛿𝑓
= 𝐹𝑏𝑙 − 𝐾𝑎𝑐𝑡𝛿 

𝐾𝑎𝑐𝑡 =
𝐹𝑏𝑙

𝛿𝑓
 

So, K act is called actuator stiffness which is the slope of the actuator load straight line.   
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Now we will talk about impedance matching, a very closely related concept. So, imagine that 

we have the actuator and again we are concerned with a 1 D case to keep it simple and that 

is attached to a spring. So, we get a force here F0 and del 0. So, this spring  does not keep the 

actuator free. So, the expansion cannot be delta f and apart from that the  spring also does not 

restrain it fully. So, the force also cannot be a block force and  the displacement cannot be 0. 

So, force is between 0 and the block force and the displacement  is between 0 and delta f and 

that depends on the stiffness of the spring.  So, from our previous equation we can write F0 

is equal to F bl minus k actuator multiplied by delta 0. 

𝐹0 = 𝐹𝑏𝑙 − 𝐾𝑎𝑐𝑡𝛿0 



So, it is the actuator force and the spring force in terms of the spring constant can be written 

as K external, which is the stiffness of the spring. So, K external multiplied by delta 0, but F0 

and Fs should be same for equilibrium.  

So, we can write Fbl minus k act minus delta 0 is equal to K external delta 0 and that gives us 

delta 0 as block force divided by sum of the two stiffness, the actuator stiffness and the spring 

stiffness i.e. the external stiffness.  

𝐹𝑠 = 𝐾𝑒𝑥𝑡 . 𝛿0 

𝐹0 = 𝐹𝑠 ⇒ 𝐹𝑏𝑙 − 𝐾𝑎𝑐𝑡𝛿0 = 𝐾𝑒𝑥𝑡 𝛿0 

⇒ 𝛿0 =
𝐹𝑏𝑙

𝐾𝑎𝑐𝑡 + 𝐾𝑒𝑥𝑡
 

So, it looks something like this graphically we can represent it in this way. So, if you are 

concerned with voltage V here. So, these  are delta side and this is F. So, these are load line for 

this actuator and  then on this if we draw a straight line which has a slope equal to the external 

stiffness  and this is our actuator stiffness. So, the intersection of these two lines tells us about 

the displacement and the force. 

The expression is written here. So, this is a way to graphically represent the same thing.  So, 

now, when as the voltage increases we keep on getting this  area. So, the area under this 

triangle increases. It becomes maximum when we reach our desired  voltage and again from 

here we can come back and we can keep the cycle going on. So, in one half cycle when voltage 

goes from 0 to V the amount of work done is the area of this triangle. So, we can say that work 

done by the actuator is half multiplied by delta 0 into F0 and with all these previous 

expressions we can write this as this.  

Δ𝑊𝑎𝑐𝑡 =
1

2
 𝛿0𝐹0 =

1

2
 𝐹𝑏𝑙

2
𝐾𝑒𝑥𝑡

(𝐾𝑎𝑐𝑡 + 𝐾𝑒𝑥𝑡)2
 

Now, if I want to maximize the work. We can just say that the derivative of the external work 

is 0 and if we said the derivative 0 this gives us this condition that K external is equal to K 

actuator.  

𝜕

𝜕𝐾𝑒𝑥𝑡

(Δ𝑊𝑎𝑐𝑡) = 0 ⇒ 𝐾𝑒𝑥𝑡 = 𝐾𝑎𝑐𝑡 

So, to extract maximum amount of work we have to make sure that the external stiffness and 

the actuator stiffness are same and this concept is called impedance matching. So, when 

impedance match  we get most of it from the actuator. So, if we know the external stiffness 

and we need to choose a proper actuator for that we have to choose actuator in such a way 

that the stiffnesses are same and I mean the impedance matching condition is satisfied. 
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Now, we look into piezoelectric sensors and actuators. The piezoelectric sensors and 

actuators  are generally available in the form of these thin sheets. So, here we can see there is  

axis 1, 2 and 3. Axis 3 denotes the thickness axis and they are generally polarized along  the 

thickness axis. Polarization is shown by different marks for example, here it is  shown by this 

dot and along the three axis at the top and bottom surface the electrodes  are deposited. They 

can be polarized along other directions also 1 or 2, but for most of the applications we gave 

these sheets polarized along the direction 3. 

Now in these thin sheets the properties are same in 1-2 plane. So, they  are generally isotropic 

in 1-2 plane. So, the properties along direction  1 and direction 2 are same, but they are 

different in 1-3 and 2-3 planes. So,  if we look into the constitutive relation where stress and 

electric field are the states  and so, it is stress electric field. So, when we have these as the as 

the stress states we have this we have this constitutive relation. 

Now, the individual components of the constitutive relation looks like this here. So, because 

of the isotropic in 1-2 plane  we can see that S₁₁ and S₂₂ are same and similarly S₁₃ and S₂₃ 

are same. And also  we see that there is no coupling between normal and shear components 

and there is no coupling  within the shear components as well. And also we can see that these 

two   components S₄₄ and S₅₅ are also same because the properties are same in 1-2 plane. 

Similarly, d₂₄ and d₁₅ are also same.  
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If we look at the compliance matrix the S matrix once again this is how it looks in terms of the 

elastic moduli and Poisson’s ratios. So, again because of the isotropic in 1-2 plane we can see 

that   E₁ and E₂ are same and similarly nu ₃₁ and nu ₃₂ are same. So, that is how it looks like  

the compliance matrix Sᴱ in terms of the elastic constants and the epsilon vector  is this, 

epsilon 11, epsilon 22 and epsilon 33. And, again because it is transversely isotropic epsilon 

11 sigma and epsilon 22 sigma can also be same. 

𝜀11
𝜎 = 𝜀22

𝜎  


