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Hello, and welcome to lecture 53. We are discussing about transonic compressors. In last 

lecture, we started discussing about the effect of different flow parameters on say, flow 

behaviour within the blade passage. We were discussing about the formation of losses. We 

have discussed about the different losses, that’s what is going to occur because of change of 

incidence angle.  



Then we were discussing about the effect of change of area ratio. We were discussing about 

the effect of change of pitch to chord ratio. As we have discussed, now, we are more interested 

towards the development of these airfoils. So, today's lecture, that’s what is mostly covering 

the part, that’s what we say how to develop these transonic airfoils.  

Now, in order to have detailed understanding for the development, we need to have some 

fundamentals of say, geometry, trigonometry as well as some mathematics what you have 

already studied during class 10 or say 12. Let us move ahead with.  
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So here, this is what we are discussing in sense of development of say Camber line. So, if you 

recall, this is what we were discussing when we have discussed about say, subsonic airfoils or 

when we were discussing about subsonic, say, compressors design; where we have discussed 

about the different types of camber lines. We have said like circular arc camber line, parabolic 

camber line, polynomial camber line, exponential camber line, DCA camber line, MCA camber 

line.  

Now, if you look at, this circular and parabolic chamber line, that’s what has mainly been used 

for subsonic airfoils, even Double Circular Arc also, people, they started using that also we 

have discussed. Now for say, transonic and supersonic airfoils, we are looking for different 

kind of camber shapes or camber line shapes.  

They are say, polynomial type or say exponential type, say DCA type or MCA type. So, let us 

try to learn how exactly we will be making these camber lines.  
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We are discussing about say development of the camber line for the transonic airfoil. So, we 

can say, what line we will be developing that line need to be a smooth line. When we say we 

are looking for say smooth line, that’s what will be having say, number of points, that’s what 

is set nearby. Secondly, we need to decide the formulation or the equation for that camber line 

and that camber line equation need to be such that it will give say…if you give say…certain 

boundary conditions, maybe at the leading edge or maybe somewhere in the mid chord or 

maybe in the trailing edge region then it should give the solution for that.  

If we consider, we can represent say any camber line equation as say y is equal to function of 

x, where x we can consider, say, mainly people, they are considering say x as say chord length 

but the sake of brevity here, in this case, we are considering x as say location rather than, you 

know, defining that as a chord; because that’s what will be helping us in solving the equations.  
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So, in case of solution of the equation, what all we are discussing those equations are say 

quadratic equations. Now, those equations when we say, we need to solve that equation. For 

solving that equation, we are looking for different kinds of boundary conditions. So, if you 

recall when we were discussing about subsonic airfoils that time we have discussed the first 

condition, that’s what is say all points that need to be fit on the line for particular coordinate 

system.  

If you recall, we were discussing about the slope at the leading edge and third boundary 

condition we were discussing, that’s what is say slope at the trailing edge. Now these three-

boundary conditions, that’s what is sufficient when we are discussing about say circular arc 

camber line. We are discussing about the transonic airfoils development under that condition 

we are looking for some special conditions.  

If you look at here, say many supersonic airfoil, that’s what is required little cambered near the 

leading edge. This cambered, it may be zero or it may be negative or it may be positive. Now 

in order to have that cambered, in that case, we are looking for some boundary condition. That 

boundary condition we can say second derivative of the camber line at the leading edge. How 

to get that?  

Say, in order to achieve that second derivative part, the ratio between the second derivative at 

the leading edge and point where the absolute value of second derivative is maximum, that’s 

what we will be considering as a boundary condition. So, this is what will be my fourth 

boundary condition.  
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Now, similar to that we will be having trailing edge. And, for trailing edge also, we need to 

have the boundary condition because we can understand when the flow, that’s what is flowing 

from my suction surface and the pressure surface near the trailing edge, we will be having the 

flow that’s what will be subjected to some deviation angle. And, if we will not take care of the 

curvature at the trailing edge, it may be possible that we will be having rise of losses. We define 

that as say wake loss or the profile loss. So, for that also, we need to put the fifth boundary 

condition.  

So, we can say, this boundary conditions as say at 𝑥 = 0, 𝑦 = 0, that is nothing but at the 

leading edge, my first derivative, I will be putting as say tan 𝛼1. This 𝛼1 is nothing but my inlet 

flow angle and 𝑦̈, that’s what is say second derivative. We can say it is P, that’s what is some 

constant into second derivative, that’s what is having maximum value.  

                 𝑇ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠: 

                                           (4)  𝑥 = 0;           𝑦 = 0 

𝑦̇ = tan(𝛼1) 

                                                                         𝑦̈ = 𝑃 × (𝑦̈)𝑚𝑎𝑥 

 

At 𝑥 = 𝐿, we can say this is what is at the trailing edge; we can say, 𝑦̇ that’s what is say my 

first derivative, that’s what we are writing as say tan 𝛼2 and second derivative we are putting 

Q into this second derivative which is having maximum value.  



𝑇ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠: 

                                          (5) 𝑥 = 𝐿;                   

𝑦̇ = tan(𝛼2) 

    𝑦̈ = 𝑄 × (𝑦̈)𝑚𝑎𝑥 

Now, this is what is more in sense of mathematics. Let us try to understand when we will be 

discussing the development of different kind of camber lines, that’s what will be giving more 

clarity.  
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Now, very first, let us try to develop say, polynomial camber line. So, here in this case, say this 

is what is a kind of camber line what we are looking for. Say, this is what is say my assumed 



camber line which is having say inflow angle, we can say is 𝛼1, my outlet flow angle, that’s 

what is say 𝛼2. We can say this is what is say my chord length c, this is my axial chord and this 

is what is representing B, that’s what we can say some kind of location. Say, we can say it is a 

function of 𝑥 = 𝐿.  

Now, in order to develop this polynomial camber line, we need to select some equation. Now, 

there is a good literature, that’s what is available, that’s what was very old literature but still, 

that’s what is giving very good understanding and explanation for the development of such 

kind of camber lines. So, here what all we are discussing, that’s what will be giving you some 

idea. Later on, as per your expectation or as per your requirement, you can modify the 

formulation of this line.  

Say, here we are assuming our polynomial camber line equation as say (𝑥 − ℎ)2 = 4𝑎(𝑦̈ − 𝑘).  

That’s what we can say, it is a parabolic equation. Now, this is what is my second derivative. 

If I will be simplifying that, this is what will be giving me the equation in sense of 𝑦 = 𝑓(𝑥).  

                        𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 

(𝑥 − ℎ)2 = 4𝑎(𝑦̈ − 𝑘) 

                        𝑂𝑛 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 

𝑦 =
(𝑥 − ℎ)4

48 ∙ 𝑎
+

𝑘

2
∙ 𝑥2 + 𝑏 ∙ 𝑥 + 𝑐 

Here in this case, ‘h’ is nothing but the position on the x axis where the second derivative, 

that’s what is maximum, that’s what is of our interest. ‘k’ is the value which the second 

derivative has at that point and a, b, c, h and k, they all are the constants. 

𝐿 = 𝑎𝑥𝑖𝑎𝑙 𝑐ℎ𝑜𝑟𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 

𝐵 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑥 = 𝐿 

Now, in order to get the solution for this equation, we need to find this constant, say, what 

constants we are looking at, that’s what is say a, b, c, h and k, those all constants we can achieve 

by putting different boundary conditions. So, we are putting very first boundary condition. We 

can say at 𝑦 = 0 and 𝑥 = 0, we will be getting the value of some constant c. 

 

 



𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠: 

                                             (1)   𝑦 = 0 𝑎𝑡 𝑥 = 0 

                                                               ⇒ 𝑐 = −
ℎ4

(48 ∙ 𝑎)
 

Same way, if we are considering our boundary condition at say leading edge, what we have 

defined at say 𝑥 = 0, my first derivative, that’s what is equal to tan 𝛼1. So, that’s what is giving 

me the value of constant B. 

𝑆𝑙𝑜𝑝𝑒 𝑎𝑡 𝐿𝑒𝑎𝑑𝑖𝑛𝑔 𝑒𝑑𝑔𝑒 

                                             (2)  𝑥 = 0, 𝑦̇ = tan(𝛼1) 

⇒ 𝑏 =
ℎ3

(12 ∙ 𝑎)
+ tan(𝛼1) 
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Now, what we know, as we have discussed for many, say airfoils, we need to have slight 

camber, that’s what need to be provided at the leading edge. In order to have that as a 

configuration, we are putting our boundary condition, as we have discussed, this is what is at 

𝑥 = 0, my second derivative, that’s what I am writing as 𝑃 × (𝑦̈)𝑚𝑎𝑥, that’s what will lead to 

give me the value of ‘k’ as well as the value of ‘P’. 

                                              (3)  𝑦̈ = 𝑃 × (𝑦̈)𝑚𝑎𝑥 𝑎𝑡 𝑥 = 0 

                                                              𝑤ℎ𝑒𝑟𝑒 𝑃 =
ℎ2

4 ∙ 𝑎 ∙ 𝑘
+ 1 

                                                               ⇒ 𝑘 = −
ℎ2

4 ∙ 𝑎(1 − 𝑃)
 

Now, we know what is the slope at our trailing edge. Based on that, we can calculate what will 

be the value of ‘a’. So, here in this case, we will see, we are having say constants we are 

calculating a, b, c and k. 
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Now, as we have discussed, we are also looking for say trailing edge configuration. We need 

to take care of what is happening with our say deviation angle. In order to have that inline to 

what we have done at the leading edge, we will be doing, say putting boundary condition as 

say leading edge what we have done. So, here in this case, at 𝑥 = 𝐿, my second derivative I am 

writing as some value of Q into second derivative which is having maximum value, that’s what 

will lead to give me the constant ‘h’. 

                                              (5)  𝑥 = 𝐿, 𝑦̈ = 𝑄 × (𝑦̈)𝑚𝑎𝑥 

                                                               ⇒ ℎ =
𝐿

[1+√
1−𝑄

1−𝑃
]

 

Now, you know, we are having five constants and we are having, say different equations. We 

can say 𝐿2 + 𝐵2 = 𝑐ℎ𝑜𝑟𝑑2, that’s what is based on my trigonometry. 

                                             (6)   𝐿2 + 𝐵2 = 𝑐ℎ𝑜𝑟𝑑2 

And, here in this case, at 𝑥 = 𝐿 𝑎𝑛𝑑 𝑦 = 𝐵, if I will be putting those numbers, we will be 

getting the value of this B. 

                                              (7)  𝑥 = 𝐿, 𝑦 = 𝐵 

                    ⇒ 𝐵 =
(𝐿 − ℎ)4

48 ∙ 𝑎
+

𝑘

2
∙ 𝐿2 + 𝑏 ∙ 𝐿 + 𝑐 



Now, what all we know? We know all these constants. Now for a particular value of x, we can 

calculate what will be the value of y. And that is how we will be generating the coordinates, 

say coordinates, say x coordinates and y coordinates.  

So, you know, in order to have the development of our pressure surface as well as say for 

suction surface. In line to this for camber line; here in this case, this camber line, that’s what 

can be developed by using this particular equation.  
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Now, let us see what all input parameters we are looking for in order to develop this camber 

line. Suppose say we are looking for polynomial camber line. We are looking for data as say 

stagger angle. We are looking for say length. We are looking for say, maximum thickness in 

sense of percentage chord, leading edge radius, trailing edge radius, maximum thickness to 

chord ratio. We will be looking at number of points to be developed for each, okay. We are 

looking for say leading edge angle, that’s what is 𝛼1, trailing edge angle (𝛼2). We are also 

looking for say normalized curvature of camber line at the leading edge, that’s what we say as 

P, that’s what is in the range of 0 to 1.  

Same way, normalized curvature of camber line at the trailing edge, that’s what we say as Q. 

Conventionally, it says like Q, that’s what is having say value in the range of 0.5. For most of 

the application, we are not considering say we will be having say camber or say slight camber 

at the leading edge and that is the reason why P equal to 0, that’s what is quite satisfactory.  

Towards the hub region when we are developing the camber line for say hub region where we 

need to have P value to be slightly smaller or say that’s what is a positive value we need to 



consider; near the tip region, we need to consider this P value to be negative. So, this is what 

will give us idea how do we develop say polynomial camber line. I am sure, this is what will 

give you idea how exactly we will be developing this line.  

Now, in order to develop this kind of camber line, you need to write the program, say you 

know, suppose if I consider I am having blade, for that blade, I will be having number of 

stations and for all those stations we are looking for the camber line and based on my 𝛼1 and 

𝛼2, if I will be putting these numbers, taking care of all this what all we have discussed, we 

will be able to develop say polynomial kind of say camber line.  
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Now, second camber line, that’s what we say is an exponential kind of camber line. Now, what 

is happening here is for say polynomial kind of camber line, we are not having much control 



in sense of formation of say curve for specially camber line. Suppose, say I want to develop 

Multiple Circular Arc kind of configuration or Multiple Circular Arc kind of airfoil. Under that 

condition, we need to put some extra location here. So, this is what we can say, this is what is 

a location at say some point s. We say that as say inflection point and this is what is some angle 

𝛼𝑠.  

So, what we will be doing? We will be putting some point, that point, we will be having control 

on that. So, we will be having say one line up to some location. We will be having second line 

up to some location and that is how we can go with the development of this kind of say camber 

line. So, here in this case, we will be using two different equations. As I discussed, we will be 

having say one equation of camber line up to this inflection point. We will be having second 

camber line equation that’s what is from say inflection point to the trailing edge.  

So, let us consider, say exponential kind of equation. So, this is what is the equation, what we 

are considering, say 

𝑦̈ = 𝑏(𝑥 − 𝑠)𝑒𝑎(𝑥−𝑠) 
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Now, suppose if we consider, as we are discussing, we are considering the location from my 

leading edge to some inflection point, this equation we can write down, say as y1. We will be 

having some constants a1, b1, c1 and d1 and L as we have discussed, it is an axial chord and this 

is what is a function of say 𝑥 = 𝐿. 

 



0 < 𝑥 < 𝑆 𝑤ℎ𝑒𝑟𝑒 𝑆 =
𝑠 ∙ 𝐿

100
 

                          𝑇ℎ𝑒 𝑓𝑖𝑛𝑎𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 

𝑦1 =
𝑏1

𝑎1
3 𝑒𝑎1(𝑥−𝑆)[𝑎1(𝑥 − 𝑆) − 2] + 𝑐1 ∙ 𝑥 + 𝑑1 

𝐻𝑒𝑟𝑒 𝑎1, 𝑏1, 𝑐1, 𝑑1 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 

                                                                  𝐿 = 𝑎𝑥𝑖𝑎𝑙 𝑐ℎ𝑜𝑟𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 

                                                                  𝐵 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑥 = 𝐿 

Now, in order to solve this, we need to put certain boundary conditions as we have discussed. 

This boundary conditions, that’s what will remain similar to what all we have discussed in 

earlier case. We are looking for five boundary conditions.  

First, that’s what we have discussed is 𝑦1 = 0 𝑎𝑡 𝑥 = 0, that’s what will be giving me constant 

d1. When I am taking say 𝑥 = 0, this is nothing but this is what is my slope as we have 

discussed. That’s what will be giving me my second constant as say c1. You can do pen paper 

calculation in order to check with what all numbers we are putting here. 

𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠: 

                                             (1)   𝑦1 = 0 𝑎𝑡 𝑥 = 0 

                ⇒ 𝑑1 = (𝑎1 ∙ 𝑠 + 2) ×
𝑏1

𝑎1
3 × 𝑒−𝑎1∙𝑆 

                                             (2)  𝑦̇1 = tan(𝛼1)  𝑎𝑡 𝑥 = 0 

                                                              ⇒ 𝑐1 = tan(𝛼1) + (𝑎1 ∙ 𝑠 + 1) ×
𝑏1

𝑎1
2 × 𝑒−𝑎1∙𝑆 
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Now, as we have discussed near this leading edge, we may need to look for say slight camber 

and that is the reason why we are incorporating this boundary condition where we can calculate 

what will be the value of say constant P.  

                                               (3)  𝑦̈1 = 𝑃 × (𝑦̈1)𝑚𝑎𝑥 𝑎𝑡 𝑥 = 0 

⇒ 𝑃 = 𝑎1 ∙ 𝑆 ∙ 𝑒(1−𝑎1∙𝑆) 

Same way, now, we are reaching at location 𝑥 = 𝑆. So, in previous case for polynomial camber 

line, what we have done, that’s what is say at leading edge and trailing edge we have given the 

boundary condition.  

Here in this case, we will be putting this boundary condition at say inflection point. So, this is 

what we are putting at the inflection point.  
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Now, if you look at, say we are having two values of constant c1, that’s what we have received 

by considering 𝑥 = 0 and slope factor.  
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And, this is what is say my second boundary condition. So, based on that if we are solving, we 

will be getting the constant b1. 

                                             (4)  𝑥 = 𝑆,   𝑦̇ = tan(𝛼𝑠) 

⇒ 𝑐1 = tan(𝛼𝑠) +
𝑏1

𝑎1
2 

 



                           𝑓𝑟𝑜𝑚 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 − 2, 

𝑐1 = tan(𝛼1) + (𝑎1 ∙ 𝑠 + 1) ×
𝑏1

𝑎1
2 × 𝑒−𝑎1∙𝑆 

                          𝐹𝑟𝑜𝑚 (2) 𝑎𝑛𝑑 (4) 𝑜𝑓 𝑐1, 𝑤𝑒 𝑤𝑖𝑙𝑙 𝑔𝑒𝑡: 

𝑏1 = 𝑎1
2 ∙

(tan(𝛼1) − tan(𝛼𝑠))

1 − (𝑎1 ∙ 𝑆 + 1)𝑒−𝑎1∙𝑆
) 
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Now, let us move towards the next location. So, this is what is my next location. So, my 

equation, that’s what will be written as say y2. We can say, this is what all are the constants a2, 

b2, c2 and d2. Again, we will be putting our boundary condition at say inflection point. So, at 

𝑥 = 𝑠, we will be having 𝑦̇2 = tan(𝛼𝑠), that’s what will be giving me my constant c2. 

0 < 𝑥 < 𝑆 𝑤ℎ𝑒𝑟𝑒 𝑆 =
𝑠 ∙ 𝐿

100
                            

                            𝑇ℎ𝑒 𝑓𝑖𝑛𝑎𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 

𝑦2 =
𝑏2

𝑎2
3 𝑒𝑎2(𝑥−𝑆)[𝑎2(𝑥 − 𝑆) − 2] + 𝑐2 ∙ 𝑥 + 𝑑2 

𝐻𝑒𝑟𝑒 𝑎2, 𝑏2, 𝑐2, 𝑑2 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 

Now, when we are putting this location, this particular location, we need to be very careful 

what point we are discussing about ‘s’ that needs to be a smooth point. So, you know, like the 

line what we are drawing, that line need to be smooth at this connection point; and that’s what 



we are putting here. At 𝑥 = 𝑠, we are putting 𝑦1 = 𝑦2, and that’s what will be giving me second 

constant as say d2. 

                                             (5)  𝑥 = 𝑆 𝑎𝑡 𝑦̇2 = tan(𝛼𝑠) 

                                                               ⇒ 𝑐2 = tan(𝛼𝑠) +
𝑏2

𝑎2
2 

                                            (6)  𝑥 = 𝑆,   𝑦1 = 𝑦2 

                                                              ⇒ 𝑑2 = 2 ∙ (
𝑏2

𝑎2
3 −

𝑏1

𝑎1
3) + 𝑆 ∙ (𝑐1 − 𝑐2) + 𝑑1 
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Now, you know, we will be putting say next boundary condition at 𝑥 = 𝐿 near the trailing edge, 

that’s what will lead to give me say second value of c2. Again, if you will be solving these two 

values of constant c2, we will be able to achieve the value of constant b2. And, same boundary 

condition in order to consider your deviation angle configuration, we will be putting the 

boundary condition of second derivative and its maximum value, that’s what will lead to give 

me the value of Q. 

𝑆 < 𝑥 < 𝐿 𝑤ℎ𝑒𝑟𝑒 𝑆 =
𝑠 ∙ 𝐿

100
 

                                             (7) 𝑥 = 𝐿,   𝑦̇2 = tan(𝛼2) 

                                 ⇒ 𝑐2 = tan(𝛼2) −
𝑏2

𝑎2
2 × 𝑒𝑎2∙(𝐿−𝑆) × [𝑎2 ∙ (𝐿 − 𝑆) − 1] 



                                    𝐹𝑟𝑜𝑚 (5) 𝑎𝑛𝑑 (7) 𝑜𝑓 𝑐2, 𝑤𝑒 𝑤𝑖𝑙𝑙 𝑔𝑒𝑡: 

𝑏2 =
𝑎2

2(tan(𝛼2) − tan(𝛼𝑠))

(1 + (𝑎2 ∙ (1 − 𝑆) + 1)𝑒𝑎2∙𝑆)
 

                                             (8)  𝑦̈2 = 𝑄(𝑦̈2)𝑚𝑎𝑥  𝑎𝑡 𝑥 = 𝐿 

                                                               ⇒ 𝑄 = 𝑎2 × (𝑆 − 𝐿) × 𝑒(1+𝑎2∙(𝐿−𝑆)) 

We know what is my 𝐿2 + 𝐵2, that’s what is 𝑐ℎ𝑜𝑟𝑑2 and at 𝑥 = 𝐿, and 𝑦 = 𝐵, that’s what will 

be giving me the value of B. 

                                              (9)  𝐿2 + 𝐵2 = 𝑐ℎ𝑜𝑟𝑑2 

                                             (10) 𝑥 = 𝐿,   𝑦 = 𝐵 

                                                              ⇒ 𝐵 =
𝑏2

𝑎2
3 × 𝑒𝑎2∙(𝐿−𝑆)[𝑎2 ∙ (𝐿 − 𝑆) − 2] + 𝑐2 ∙ 𝐿 + 𝑑2 

Now, all these parameters, that’s what will be helpful to us in order to develop the exponential 

camber line.  
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So, let us look at this exponential camber line. Now, as we were discussing, we are having say, 

different values of P and Q. In order to have say, special requirement at the inflection point, we 

need to be little careful of and it says we need to have our a1 value, that’s what is my constant 

value a1 and constant value of a2 that need to be selected in this particular range. 



𝑎1 >
1

𝑆
 

𝑎𝑛𝑑 

𝑎2 <
1

𝑆 − 1
 

Because we can say, I will be making my curve here, I can make my second curve here. But 

when we are having this connection, it should not have any jump, it should be smooth one and 

that’s what is very important. And, that’s what we can consider by providing particular 

boundary condition and selecting these numbers, okay. 
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Now, suppose say, if you are looking for development of, say, exponential camber line; again, 

what all we are looking for is say our stagger angle. We are looking for the length of the chord, 

location of the maximum thickness, leading edge radius, trailing edge radius, maximum 

thickness to chord ratio. We are looking for say leading edge angle, that’s what is say, 𝛼1. We 

are looking for 𝛼2. Same way, here, we are looking for say, constant value of P and Q. Two 

additional points we need to care for here, that’s what is the location point of inflection in 

percentage chord. So, we are looking for where exactly we want to put our inflection point.  

Are we looking for this inflection point towards the leading edge? Are we looking for, say, this 

inflection towards the trailing point? At what location? That’s what is very important and that’s 

what we are defining in sense of percentage chord. At the same time, you know, we are also 

interested in putting the inclination, okay. At what inclination we are putting this line that will 



make the shape of my airfoil. So, if you recall when we were discussing about the Multiple 

Circular Arc airfoil, we are having say different kind of configuration where we required for 

managing our flow towards the trailing edge. Okay. 
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Now, Double Circular Arc airfoil or say Double Circular Arc camber line, what we are looking 

for, that’s what can be represented in sense of this equation:   

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 = 𝑅2 

(𝑥0, 𝑦0) 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑒𝑟 

𝑅 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑐𝑖𝑟𝑐𝑙𝑒 

𝐻𝑒𝑟𝑒, 𝐿 = 𝑎𝑥𝑖𝑎𝑙 𝑐ℎ𝑜𝑟𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 



                         𝐵 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑥 = 𝐿 

And based on that, if we will be putting our boundary conditions, the same boundary condition, 

what all we have discussed in sense of condition 1, condition 2 and say this condition 3 based 

on that and we will be having our Pythagoras law, we will be able to achieve what all we are 

looking for in sense of coordinates for my camber line. So, this is what is for Double Circular 

Arc camber line. 

𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠: 

                                              (1) 𝑥 = 0,   𝑦̇1 = tan(𝛼1) 

⇒ 𝑥0 = −𝑦0 tan(𝛼1) 

                                              (2) 𝑥 = 𝐿,   𝑦̇ = tan(𝛼2) 

                      ⇒ (𝐵 − 𝑦0) × tan(𝛼2) = 𝑥0 − 𝐿 

                                              (3)  𝑦 = 0 𝑎𝑡 𝑥 = 0 

                                                                  ⇒ 𝑥0
2 + 𝑦0

2 = 𝑅2 

                                               (4)  𝐿2 + 𝐵2 = 𝑐ℎ𝑜𝑟𝑑2 

                                               (5)  𝑥 = 𝐿,   𝑦 = 𝐵 

                                                                   ⇒ (𝐿 − 𝑥0)2 + (𝐵 − 𝑦0)2 = 𝑅2 

𝑆𝑜𝑙𝑣𝑖𝑛𝑔 𝑎𝑏𝑜𝑣𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠, 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠  

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑏𝑜𝑡ℎ 𝐿 𝑎𝑛𝑑 𝐵 𝑖𝑠 𝑜𝑛𝑙𝑦 𝑡𝑎𝑘𝑒𝑛 𝑖𝑛𝑡𝑜 𝑎𝑐𝑐𝑜𝑢𝑛𝑡. 

Now, there are different methods, people, they are opting with different kinds of Double 

Circular Arc camber line. This is what is one of the methods. One more method, that’s what 

has been discussed we will see. Now in order to develop this Double Circular Arc camber line, 

here in this case, this is what is straightforward. We are having say three boundary conditions.  

That’s what is sufficient for us and based on that, we can say, we can put our stagger angle. 

We can put where we will be having maximum say thickness, we know, that’s what is at the 

50% of my chord. What will be my leading edge radius, trailing edge radius and, you know, 

what will be my angles 𝛼1𝑎𝑛𝑑 𝛼2. That’s what will be sufficient condition for development of 

Double Circular Arc camber line.  
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Now, as I was discussing, this is what has been discussed by Aungier in his book. This is also 

for the development of Double Circular Arc airfoil, rather defining in sense of Double Circular 

Arc camber line. So, what they have done? Here in this case, we will be having maximum 

thickness, that’s what has been placed at the 50% of chord and upper surface and lower surface 

coordinates that’s what is he has been kept with. This is what is representing the upper radius. 

This is what is representing the lower radius.  

We can say, pressure surface as well as the suction surface and this is what is for say my camber 

line equation. So, my coordinates Δ𝑥, that’s what we can calculate based on trigonometric rule. 

Δ𝑦 for upper surface also can be calculated based on the trigonometry. Now, this 𝜃, that is 

nothing but which is representing my camber angle. 



Δ𝑋𝑈, 𝑓𝑟𝑜𝑚 𝑚𝑖𝑑 − 𝑐ℎ𝑜𝑟𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑜𝑠𝑒 𝑟𝑎𝑑𝑖𝑢𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑡𝑟𝑎𝑖𝑙𝑖𝑛𝑔 𝑒𝑑𝑔𝑒  

       𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 

Δ𝑋𝑈 = (𝑅𝑈 − 𝑟0) sin (
𝜃𝑈

2
) = 𝑐

2⁄ − 𝑟0 cos (
𝜃

2
) 

                                                                    𝑤ℎ𝑒𝑟𝑒 𝜃 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑙𝑎𝑑𝑒 𝑐𝑎𝑚𝑏𝑒𝑟 𝑎𝑛𝑔𝑙𝑒 

Δ𝑌𝑈 = 𝑅𝑈 − 𝑦(0) −
𝑡𝑏

2⁄ + 𝑟0 sin(𝜃
2⁄ ) = 𝑅𝑈 − 𝑑 

                                                                   𝑤ℎ𝑒𝑟𝑒 𝑑 = 𝑦(0) +
𝑡𝑏

2⁄ − 𝑟0 sin(𝜃
2⁄ ) 

                               𝐴𝑓𝑡𝑒𝑟 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, 

𝑅𝑈 =
𝑑2 − 𝑟0

2 + [𝑐
2⁄ − 𝑟0 cos(𝜃

2⁄ )]
2

2(𝑑 − 𝑟0)
 

𝑅𝐿 = 𝐿𝑜𝑤𝑒𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑐 𝑟𝑎𝑑𝑖𝑖 𝑜𝑓 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 

𝑅𝑈 = 𝑈𝑝𝑝𝑒𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑐 𝑟𝑎𝑑𝑖𝑖 𝑜𝑓 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 

                                         𝑅𝐶 = 𝐶𝑎𝑚𝑏𝑒𝑟 𝑙𝑖𝑛𝑒 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 

Now, in order to achieve this curvature or say radius of my upper surface, we need to go with 

the number of iterations solving this upper surface and lower surface. And, that’s what will 

lead to give the radius of my upper surface, that’s what is as a function of this d, what is my r0, 

that is nothing but my radius at the leading edge, what is my chord, what will be my camber 

line or camber angle. So, this is how we can achieve our upper surface or upper radius. In line 

to that we can achieve what will be our lower radius. So, this is also one of the method.  

Other people, they are developing the Double Circular Arc airfoil with some different 

approach, different methodology. So, here in this case, this is what is representing Double 

Circular Arc kind of camber line. 
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Now, let us move it what all we are more interested in or say for future development of our 

transonic airfoil, that’s what is say Multiple Circular Arc. We can say, that’s what is of S kind 

of shape. So, in line to what all we have discussed for our exponential kind of say camber line, 

we will be using the similar kind of logic but here, this is what has been developed in a different 

way. So, here in this case, also we are looking for say, inflection point. So, this is what is my 

location for inflection point and this is what is my inflection angle.  

Now, up to from leading edge to my inflection location, we will be considering one curve, one 

line or we can say one camber line and from say inflection point to trailing edge, we will be 

considering other line, okay. Now, there are different methodologies, different authors, 

different researchers, different companies, different universities, they are developing their own 

camber lines for Multiple Circular Arc. Here in this case, for the sake of simplicity, what we 

have done, say up to our inflection point, we have considered this as a straight line.  

So here, this equation, we can say, that’s what is given by 𝑦1 = tan(𝛼1) ∙ 𝑥, we can say this is 

what is the equation of straight line. 

0 < 𝑥 < 𝑆 𝑤ℎ𝑒𝑟𝑒 𝑆 =
𝑠 ∙ 𝐿

100
 

𝐴𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝑐𝑎𝑚𝑏𝑒𝑟𝑙𝑖𝑛𝑒 𝑡𝑜 𝑏𝑒 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑙𝑖𝑛𝑒 𝑛𝑒𝑎𝑟 𝐿𝐸 

                                                         𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 𝑦1 = tan(𝛼1) ∙ 𝑥 

𝐻𝑒𝑟𝑒, 𝐿 = 𝑎𝑥𝑖𝑎𝑙 𝑐ℎ𝑜𝑟𝑑 𝑙𝑒𝑛𝑔𝑡ℎ;  𝑎𝑛𝑑 𝐵 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑥 = 𝐿 
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Now, in order to have the other line, say this is what is from inflection point towards the trailing 

edge, that’s what we can consider as a circular arc. So, this is what is 

0 < 𝑥 < 𝑆 𝑤ℎ𝑒𝑟𝑒 𝑆 =
𝑠 ∙ 𝐿

100
 

                                             𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 = 𝑅2 

𝑤ℎ𝑒𝑟𝑒 𝑥0, 𝑦0, 𝑅 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 

Now, in line to what all boundary conditions what we have discussed, we will be putting those 

boundary conditions here. So here in this case, if we are putting our boundary condition, that’s 

what will lead to give us all the variables, all the constants. Now, once we have derived with 

the constant, we will be calculating our x and y coordinate for the camber line, okay. 

𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑛𝑔 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠: 

                                             (1) 𝑥 = 0,   𝑦̇1 = tan(𝛼1) 

⇒ 𝑥0 = −𝑦0 tan(𝛼1) 

                                              (2) 𝑥 = 𝐿,   𝑦̇ = tan(𝛼2) 

                      ⇒ (𝐵 − 𝑦0) × tan(𝛼2) = 𝑥0 − 𝐿 

                                              (3)  𝑦 = 0 𝑎𝑡 𝑥 = 0 



                                                                  ⇒ 𝑥0
2 + 𝑦0

2 = 𝑅2 

                                               (4)  𝐿2 + 𝐵2 = 𝑐ℎ𝑜𝑟𝑑2 

                                               (5)  𝑥 = 𝐿,   𝑦 = 𝐵 

                                                                   ⇒ (𝐿 − 𝑥0)2 + (𝐵 − 𝑦0)2 = 𝑅2 

𝑆𝑜𝑙𝑣𝑖𝑛𝑔 𝑎𝑏𝑜𝑣𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠, 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  

 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑏𝑜𝑡ℎ 𝐿 𝑎𝑛𝑑 𝐵 𝑎𝑠 𝑤𝑒𝑙𝑙 𝑎𝑠 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐿 𝑖𝑠 𝑜𝑛𝑙𝑦 𝑡𝑎𝑘𝑒𝑛 𝑖𝑛𝑡𝑜 𝑎𝑐𝑐𝑜𝑢𝑛𝑡.  
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Now, in order to develop this Multiple Circular Arc camber line, additional parameter what we 

are looking for is a location from where the arc that will be started with. So, as I told, like for 

development of Multiple Circular Arc airfoil, many people they are considering two circular 

arcs, say initial circular arc, second circular arc and based on that they are developing say 

Multiple Circular Arc camber line. This is one of the methods what we have discussed. We 

will be having straight line, that’s what will be followed by the curvature or we can say that 

will be followed by circular camber line.  

So, as per how we want to manage our flow on the suction surface of our blade, we need to 

modify or we need to make the airfoil or we need to make our camber line. So, once we are 

ready with our camber line, very next question that’s what will be coming is how do we put 

our thickness?  
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So, let us move towards say, having the distribution of the thickness. So, for transonic airfoils, 

say, specially when we are considering the thickness distribution, that’s what has been defined 

in sense of say, polynomial, say third order polynomial. So, here we are considering, suppose 

if you are considering the location somewhere, up to somewhere some location, somewhere 

location we can say, that’s what is say my maximum thickness location. We can say this is 

what is my z location.  

So, it says in between 0 to z or say from leading edge to some location, we can say, we will be 

selecting third order polynomial thickness distribution. That’s what is say, 𝑎 ∙ 𝑥3 + 𝑏 ∙ 𝑥2 + 𝑐 ∙

𝑥 + 𝑑; where a, b, c, d they all are the constants. And as we know, in order to solve these 

equations and in order to get this constant, we need to put different boundary conditions. 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛: 

0 < 𝑥 < 𝑍 𝑤ℎ𝑒𝑟𝑒 𝑍 =
𝑧 ∙ 𝐿

100
 

𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔 𝑡ℎ𝑖𝑟𝑑 𝑜𝑟𝑑𝑒𝑟 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑓𝑜𝑟 𝐿𝑒𝑎𝑑𝑖𝑛𝑔 𝐸𝑑𝑔𝑒 𝑟𝑒𝑔𝑖𝑜𝑛: 

𝑦1 = 𝑎 ∙ 𝑥3 + 𝑏 ∙ 𝑥2 + 𝑐 ∙ 𝑥 + 𝑑 

𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏, 𝑐, 𝑑 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 

𝐿 𝑖𝑠 𝑘𝑛𝑜𝑤𝑛 

So, this boundary conditions are say, at 𝑥 = 0, we will be putting say second derivative of this 

equation to be 0 and that’s what will be giving constant B. At 𝑥 = 𝑍 and y1, we will be putting 



our leading edge. We will be having 𝑑 = 𝑦0. Same way, at 𝑥 = 𝑍 and T, this capital T, that’s 

what we are defining in sense of thickness to chord ratio, okay. And, this is what is my third 

boundary condition. In line to that, we will be putting our fourth boundary condition and by 

putting this boundary conditions, we will be able to achieve what are the constant a, b, c, d for 

this equation.  

𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠: 

(1)  𝑥 = 0,   𝑦̈1 = 0 

⇒ 𝑏 = 0 

    (2)  𝑥 = 𝑍,   𝑦1 = 𝑦𝑙𝑒 

 ⇒ 𝑑 = 𝑦0 

(3)  𝑥 = 𝑍,   𝑦1 = 𝑇 

                 ⇒ 𝑎 = −
(𝑇 − 𝑦0)

(2 ∙ 𝑍3)
 

𝑤ℎ𝑒𝑟𝑒 𝑇 = 𝑡 ×
𝑐ℎ𝑜𝑟𝑑

100
 

(4)  𝑥 = 𝑍,   𝑦̇1 = 0 

             ⇒ 𝑐 = 3
(𝑇 − 𝑦0)

(2 ∙ 𝑍)
 

Now, as we know, this is what we are saying as an axial location. It is not the chord, this is 

what is my axial location. So, we will be selecting different x values, and for those x values by 

having this constant, we will be able to achieve the y values, okay. So, that is how we will be 

calculating our thickness distribution on suction surface. We will be able to calculate the 

thickness distribution on our pressure surface, specially up to some location Z. 
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Now, you know, later part, say towards the trailing edge, there also we are taking say third 

order polynomial but we know in that particular region, we are looking for the management of 

shock in a different way. So, third order polynomial equation, that’s what is been defined in a 

different way. So, this is what is the equation, that’s what people, they have defined with. As I 

told, there is nothing, that’s what is fixed. You can use your own equation based on your 

requirement.  

Maybe based on your computational study, you can modify this distribution, okay. So, this is 

what is representing how my value of y, that’s what is varying with the x, we will be putting 

different boundary conditions at Z and this is what is at, say my trailing edge location. We will 

be able to achieve the distribution of the thickness on say, suction surface as well as on the 

pressure surface towards the trailing edge side, okay. 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛: 

𝑍 < 𝑥 < 𝐿 𝑤ℎ𝑒𝑟𝑒 𝑍 =
𝑧 ∙ 𝐿

100
 

𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔 𝑡ℎ𝑖𝑟𝑑 𝑜𝑟𝑑𝑒𝑟 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑇𝑟𝑎𝑖𝑙𝑖𝑛𝑔 𝐸𝑑𝑔𝑒 𝑟𝑒𝑔𝑖𝑜𝑛: 

𝑦2 = 𝑒(𝑥 − 𝑍)3 + 𝑓(𝑥 − 𝑍)2 + 𝑔(𝑥 − 𝑍) + ℎ 

𝑊ℎ𝑒𝑟𝑒 𝑒, 𝑓, 𝑔, ℎ 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 

 

 



𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠: 

                                                              (1) 𝑥 = 𝑍, 𝑦2 = 𝑇 

⇒ ℎ = 𝑇 

                                                              (2)  𝑥 = 𝑍,   𝑦̇2 = 0 

⇒ 𝑔 = 0 

                                                               (3)  𝑦1 = 𝑦̈2 

                   ⇒ 𝑓 = −3
(𝑇 − 𝑦0)

(2 ∙ 𝑍2)
 

                                                               (4)  𝑥 = 𝐿,   𝑦2 = 𝑦𝑡𝑒 

                                                                            ⇒ 𝑒(𝐿 − 𝑍)3 = 𝑦𝑡𝑒 − 𝑓(𝑥 − 𝑍)2 − 𝑇 

𝑇𝑜 𝑎𝑣𝑜𝑖𝑑 𝑖𝑛𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡 𝑜𝑛 𝑡ℎ𝑒 𝑏𝑙𝑎𝑑𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑤𝑒 𝑚𝑢𝑠𝑡 ℎ𝑎𝑣𝑒 

𝑍 −
𝑓

3 ∙ 𝑒
> 𝐿 

Now, in order to avoid the inflection point on the blade surface, it says we need to take care of 

this number. So, 𝑍 −
𝑓

3∙𝑒
> 𝐿 . We can understand when we are discussing, we are selecting say 

Multiple Circular Arc; for that Multiple Circular Arc, we are having the inflection point, we 

have inflection angle. And, when we are doing our distribution of the thickness for suction 

surface as well as for the pressure surface, it should give the smooth curve and that’s what is 

need to be managed.  

Any jump or any sharp edge, that’s what has not been allowed or permitted when we are 

discussing say transonic kind of airfoils or when our flow that’s what is say supersonic flow, 

okay.  
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Now, some of the literature, it says you can go with say circular thickness distribution also. So, 

we can say, we will be going with say circular arc thickness, that’s what is given by x minus x 

and this is what is y. So, in order to avoid the confusion, there is nothing at 𝑥10, it is just for 

segregating from other constants, okay. And, we can use this circular arc thickness distribution 

up to some location as we have discussed by providing different boundary conditions, we will 

be able to achieve different constants. When we achieve, we derived the constants, we will be 

getting say values of x as well as y. 

𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑎𝑟𝑐 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛: 

0 < 𝑥 < 𝑍 𝑤ℎ𝑒𝑟𝑒 𝑍 =
𝑧 ∙ 𝐿

100
 

                                 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 

(𝑥 − 𝑥10)2 + (𝑦1 − 𝑦10)2 = 𝑅1
2 

𝑊ℎ𝑒𝑟𝑒 𝑥10, 𝑦10, 𝑅1 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 

𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠: 

(1)  𝑥 = 𝑍,   𝑦̇1 = 0 

⇒ 𝑥10 = 𝑍 

(2)  𝑥 = 0,   𝑦1 = 𝑦𝑙𝑒 

                             ⇒ 𝑍2 + (𝑦𝑙𝑒 − 𝑦10)2 = 𝑅1
2 



(3) 𝑥 = 𝑍, 𝑦1 = 𝑇 

                ⇒ (𝑇 − 𝑦10)2 = 𝑅1
2 

                               𝑤ℎ𝑒𝑟𝑒 𝑇 = 𝑡 ×
𝑐ℎ𝑜𝑟𝑑

100
 

Now, this is what all we are discussing that’s what is very hectic process when we are doing 

pen paper calculations. So, it is advised that you just learn some coding…some coding tools, 

maybe by using say your C, C++ or MATLAB. Using those say program language, you can 

develop your own code, you can develop your coordinates x and y for say suction surface, you 

can develop your coordinates for x and y for say your pressure surface. Even you can develop 

your own camber line.  

You can play with the equations and that’s what will be giving you what all we are looking for. 

As I told, there is no superficial rule for having say thickness distribution to be followed by 

this equation only, okay. As per the expectation what all you are getting, if it is solving your 

purpose, your expectation, your required result that’s what is your airfoil. So, maybe it may be 

possible that you will be going through the development of airfoil you can name that airfoil as 

your own name. Yes, this is what is possible. So, whole lot of scope, that’s what has been laid 

in sense of development of these airfoils.  

So, people initially they are going with say computational study; using CFD they are 

developing this kind of airfoils. Later on, in order to build the confidence, they will be doing 

cascade testing, you know better now. Based on those cascade testing, they will be having 

performance map and that performance map, that’s what will be used for the future 

development of blades. 
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Now, towards the trailing edge also, you can use the same circular arc thickness distribution. 

Similarly, you will be getting your x and y coordinates. And, this is how you can have the 

distribution of thickness for transonic airfoils. 

𝑍 < 𝑥 < 𝐿 𝑤ℎ𝑒𝑟𝑒 𝑍 =
𝑧 ∙ 𝐿

100
 

                             𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 

(𝑥 − 𝑥20)2 + (𝑦 − 𝑦20)2 = 𝑅2
2 

𝑤ℎ𝑒𝑟𝑒 𝑥20, 𝑦20, 𝑅2 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 

 



𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠: 

(1)  𝑥 = 𝑍,   𝑦̇2 = 0 

⇒ 𝑥20 = 𝑍 

(2)   𝑥 = 𝐿,   𝑦2 = 𝑦𝑡𝑒 

                                        ⇒ (𝐿 − 𝑍)2 + (𝑦𝑡𝑒 − 𝑦20)2 = 𝑅2
2 

(3)  𝑥 = 𝑍,   𝑦2 = 𝑇 

              ⇒ (𝑇 − 𝑦20)2 = 𝑅2
2
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With this all understanding let us take the case for the development of say cascade. Now, let 

us take some of the cascade parameters. Say, let us we are assuming say chord length as say 

8.6 cm, solidity as say 2, turning angle 48.4°, stagger angle 16°, maximum thickness at 20% of 

chord, maximum thickness value is 7.4% of the chord, leading edge radius we can say is 0.04 

cm, value of P is 0.25. Trailing edge radius is 0.02 cm, Q value is say 0.5.  

The location of the inflection point, that’s what is at the 60% of the chord. The inclination at 

the point it is say inflection angle we can say is 70° as and where it is applicable. The thickness 

distribution, we can say, the circular arc thickness distribution, we will be considering our inlet 

Mach number to be 0.7. So, with this all input data, let us try to generate the airfoils what all 

we have learned. 

 



𝐶𝑎𝑠𝑐𝑎𝑑𝑒 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

1) 𝐶ℎ𝑜𝑟𝑑 𝐿𝑒𝑛𝑔𝑡ℎ = 8.6 𝑐𝑚 

2) 𝑆𝑜𝑙𝑖𝑑𝑖𝑡𝑦 (
𝑐

𝑠
) = 2 

3) 𝐹𝑙𝑜𝑤 𝑡𝑢𝑟𝑛𝑖𝑛𝑔 (𝛼1 − 𝛼2) = 48.4 𝑑𝑒𝑔𝑟𝑒𝑒 

4) 𝑆𝑡𝑎𝑔𝑔𝑒𝑟 𝑎𝑛𝑔𝑙𝑒 = 16 𝑑𝑒𝑔𝑟𝑒𝑒 

5) 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑎𝑡 20% 𝑜𝑓 𝑐ℎ𝑜𝑟𝑑 

6) 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 = 7.4% 𝑜𝑓 𝑡ℎ𝑒 𝑐ℎ𝑜𝑟𝑑 (6.8% 𝑖𝑛 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙) 

7) 𝐿𝑒𝑎𝑑𝑖𝑛𝑔 𝑒𝑑𝑔𝑒 𝑟𝑎𝑑𝑖𝑢𝑠 (𝑦𝑙𝑒) = 0.04 𝑐𝑚 

8) 𝑃 = 0.25 

9) 𝑇𝑟𝑎𝑖𝑙𝑖𝑛𝑔 𝑒𝑑𝑔𝑒 𝑟𝑎𝑑𝑖𝑢𝑠 (𝑦𝑡𝑒) = 0.02 𝑐𝑚 

10) 𝑄 = 0.5 

11) 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑖𝑛𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 (𝑖𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒) = 60% 𝑜𝑓 𝑡ℎ𝑒 𝑐ℎ𝑜𝑟𝑑 

12) 𝐼𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑖𝑛𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 (𝑖𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒) = 70 𝑑𝑒𝑔𝑟𝑒𝑒 

13) 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛: 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑎𝑟𝑐 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

14) 𝐸𝑛𝑡𝑟𝑦 𝑀𝑎𝑐ℎ 𝑛𝑢𝑚𝑏𝑒𝑟 = 0.7 
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So, here in this case, if we will be putting all those input parameters, this is what is representing 

different kind of say camber lines with say thickness distribution. So here, this is what is 

representing my polynomial kind of camber line. This is what is representing say exponential 

camber line. This is what is a 70%. Location, we say, it is an inflection point, it is placed 70% 

and my 𝛼𝑠, that’s what is angle we are putting 30°.  



Suppose if you are putting that as a 40°, you can see the variation of the shape of this airfoil. 

You can clearly see the difference between these two. Same way, if you are considering say 

Double Circular Arc kind of configuration, this is what is Double Circular Arc configuration. 

Now when we are considering say Multiple Circular Arc, as we have discussed, this is what is 

my straight line. We can say my point that’s what is placed at say 45% of my chord. So, this is 

what is representing my second circular camber line, okay.  

And this is what is the same circular distribution of my thickness. This is what is when we are 

having, say, my inflection point, that’s what has been placed at the 60% of my chord. So, we 

can see the clear difference, clear variation that’s what is happening by changing the position 

of my inflection point for say Multiple Circular Arc camber line.  
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Now, here in this case, this is what is a representation of different camber lines. So, you can 

say, this red one, that’s what is representing my polynomial camber line with all inputs, what 

we have discussed. We will be having say exponential. Here in this case for the exponential, 

when we are having our 𝛼𝑠, that’s what is inflection angle, that’s what is 30° and 40°. We will 

be having clear variation, that’s what is happening upstream condition, just look at, even 

towards the downstream condition also.  

So, the location of this inflection point, that’s what is very important. We need to be very 

careful about that point. This is what is representing my, say, Double Circular Arc. Same way 

for, say, this black colour, that’s what is representing Multiple Circular Arc and this is what is 



representing how my camber line for the same thickness distribution, how the blades or the 

airfoils they are being generated with.  

Now, with this, we can say, we are able to generate the airfoils and after generating this airfoil, 

we will be managing our flow passage. And, by managing our flow passage, basically we are 

managing our shock structure. We are managing the placement of our normal shock and that 

is how we are managing our diffusion within the flow passage. And, that’s what will be helping 

us for development of future more efficient airfoils.  

So, this is what will give some feeling of special kind of application with different kind of 

camber lines and circular arc thickness distribution. Now, in next week, we will be discussing 

about how do we design those transonic compressors. Thank you very much for your kind 

attention! And I am sure, this is what all will be giving you some different kind of feeling with 

say, development of transonic airfoils and transonic compressors. Thank you. Thank you very 

much! 

 

 

 


