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Hello, and welcome to lecture 53. We are discussing about transonic compressors. In last

lecture, we started discussing about the effect of different flow parameters on say, flow

behaviour within the blade passage. We were discussing about the formation of losses. We

have discussed about the different losses, that’s what is going to occur because of change of

incidence angle.



Then we were discussing about the effect of change of area ratio. We were discussing about
the effect of change of pitch to chord ratio. As we have discussed, now, we are more interested
towards the development of these airfoils. So, today's lecture, that’s what is mostly covering
the part, that’s what we say how to develop these transonic airfoils.

Now, in order to have detailed understanding for the development, we need to have some
fundamentals of say, geometry, trigonometry as well as some mathematics what you have

already studied during class 10 or say 12. Let us move ahead with.
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So here, this is what we are discussing in sense of development of say Camber line. So, if you
recall, this is what we were discussing when we have discussed about say, subsonic airfoils or
when we were discussing about subsonic, say, compressors design; where we have discussed
about the different types of camber lines. We have said like circular arc camber line, parabolic
camber line, polynomial camber line, exponential camber line, DCA camber line, MCA camber

line.

Now, if you look at, this circular and parabolic chamber line, that’s what has mainly been used
for subsonic airfoils, even Double Circular Arc also, people, they started using that also we
have discussed. Now for say, transonic and supersonic airfoils, we are looking for different

kind of camber shapes or camber line shapes.

They are say, polynomial type or say exponential type, say DCA type or MCA type. So, let us

try to learn how exactly we will be making these camber lines.



(Refer Slide Time: 02:58)

+ To develop a camber line to be smooth curve and meeting the requirements of a
compressor blade, it is convenient to describe it using mathematical equation form.

+ The type and order of such an equations will be influenced by the boundary conditions
which are imposed.

+ The equation must be of high enough order to accommodate all of the necessary boundary
conditions.

+ [ts order should not be higher than absolutely necessary, however, to minimize the number
of singularities which can occur within its useful working range.

+ Let's consider an equation of the form

y=fix)

+ where the variable x is nondimensional and varies from 0 at thy blade leading edge to 1.0
al the blade trailing edge.

+ Instead of defining the x-axis as the chord line.... *x' has been defined as the axial
direction in the blade-¢lement plane.

+ This definition of the x-axis was chosen because it was found to lead to the simplest

treatment of boundary conditions.

G K. FrosiR M, earsey, A R. Wenserstrom, “Computer program for the specilicalion of axial compressor sirfosls” AD-T36879,197)
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We are discussing about say development of the camber line for the transonic airfoil. So, we
can say, what line we will be developing that line need to be a smooth line. When we say we
are looking for say smooth line, that’s what will be having say, number of points, that’s what
is set nearby. Secondly, we need to decide the formulation or the equation for that camber line
and that camber line equation need to be such that it will give say...if you give say...certain
boundary conditions, maybe at the leading edge or maybe somewhere in the mid chord or
maybe in the trailing edge region then it should give the solution for that.

If we consider, we can represent say any camber line equation as say y is equal to function of
X, where x we can consider, say, mainly people, they are considering say x as say chord length
but the sake of brevity here, in this case, we are considering x as say location rather than, you

know, defining that as a chord; because that’s what will be helping us in solving the equations.
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Camber line Desclopmert S

Three boundary conditions, or their equivalent, are absolutely necessary.

1. First condition fixes a point on the line with respect to the coordinate system,

2. The slope at the leading edge, Circular Are Camber line

3. The slope at the trailing edge.

Leading edge requirement :

+ A characteristic usually desired for supersonic compressor blades is very linle
camber in the leading portion of the blade,

*+  Depending upon the overall aerodynamic design requirements, the desired leading-
edge camber may be negative, zero, or slightly positive.

. . . . 4 .

* A convenient way of controlling this 1s to impose a boundary condition on the
second derivative rgfffu' camber line at the ft’rrdm'sz (’ufg.’.

+ To put it in dimensionless form, we specify the ratio between second derivatives at
the leading edge and the point where the absolute value of the second derivative is

maximum.

G R Frostk

earsey, A R. Wenserstrom. “Computer program for the specifiation of xial compressor mrfosds” AD-736879,1972
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So, in case of solution of the equation, what all we are discussing those equations are say
quadratic equations. Now, those equations when we say, we need to solve that equation. For
solving that equation, we are looking for different kinds of boundary conditions. So, if you
recall when we were discussing about subsonic airfoils that time we have discussed the first
condition, that’s what is say all points that need to be fit on the line for particular coordinate

system.

If you recall, we were discussing about the slope at the leading edge and third boundary
condition we were discussing, that’s what is say slope at the trailing edge. Now these three-
boundary conditions, that’s what is sufficient when we are discussing about say circular arc
camber line. We are discussing about the transonic airfoils development under that condition

we are looking for some special conditions.

If you look at here, say many supersonic airfoil, that’s what is required little cambered near the
leading edge. This cambered, it may be zero or it may be negative or it may be positive. Now
in order to have that cambered, in that case, we are looking for some boundary condition. That
boundary condition we can say second derivative of the camber line at the leading edge. How
to get that?

Say, in order to achieve that second derivative part, the ratio between the second derivative at
the leading edge and point where the absolute value of second derivative is maximum, that’s
what we will be considering as a boundary condition. So, this is what will be my fourth

boundary condition.
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Trailing edge requirement :

+ With mentioned first four conditions used alone tend to produce a blade whose curvature is
highest at the trailing edge.

+ This could result in large deviation angles and correspondingly high losses.

+ Therefore, a condition to be consider as second derivative at the trailing edge whereby its value
could be specified as something less than the maximum.

+ Which is similar to Leading Edge boundary condition.

The boundary conditions ; The baundary conditions :
(4)x=0;y=0 ($)x=L;
y=tan{m, ) y=lan{a,)
vePx(y) . y=0x(y)
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Now, similar to that we will be having trailing edge. And, for trailing edge also, we need to
have the boundary condition because we can understand when the flow, that’s what is flowing
from my suction surface and the pressure surface near the trailing edge, we will be having the
flow that’s what will be subjected to some deviation angle. And, if we will not take care of the
curvature at the trailing edge, it may be possible that we will be having rise of losses. We define
that as say wake loss or the profile loss. So, for that also, we need to put the fifth boundary

condition.

So, we can say, this boundary conditions as say at x = 0, y = 0, that is nothing but at the
leading edge, my first derivative, | will be putting as say tan a;. This a; is nothing but my inlet
flow angle and y, that’s what is say second derivative. We can say it is P, that’s what is some

constant into second derivative, that’s what is having maximum value.
The boundary conditions:
(4) x=0; y=0
y = tan(a,)

y=PXx (j})max

At x = L, we can say this is what is at the trailing edge; we can say, y that’s what is say my
first derivative, that’s what we are writing as say tan a, and second derivative we are putting

Q into this second derivative which is having maximum value.



The boundary conditions:
B)x =1L;
y = tan(az)
¥ =0 X (Nmax

Now, this is what is more in sense of mathematics. Let us try to understand when we will be
discussing the development of different kind of camber lines, that’s what will be giving more

clarity.

(Refer Slide Time: 07:46)

Polynomial Camber line
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Camber line Development
Trailing edge requirement :
+ With mentioned first four conditions used alone tend to produce a blade whose curvature is
highest at the trailing edge.
+ This could result in large deviation angles and correspondingly high losses.
+ Therefore, a condition to be consider as second derivative at the trailing edge whereby its value
could be specified as something less than the maximum.

+ Which is similar to Leading Edge boundary condition.

The boundary conditions ; The boundary conditions :
(4)x=0,y=0 ($)x=L;
y=lanim) y=lanfa,)
v=Pa(y) v=0x(y)

G R FrostR M, Ilearsey, A R. Wenserstrom. “Computer program for the specificalion of axial compressor sirfosls® AD-T56879,1972
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Now, very first, let us try to develop say, polynomial camber line. So, here in this case, say this

is what is a kind of camber line what we are looking for. Say, this is what is say my assumed



camber line which is having say inflow angle, we can say is a;, my outlet flow angle, that’s
what is say a,. We can say this is what is say my chord length c, this is my axial chord and this
is what is representing B, that’s what we can say some kind of location. Say, we can say it is a

function of x = L.

Now, in order to develop this polynomial camber line, we need to select some equation. Now,
there is a good literature, that’s what is available, that’s what was very old literature but still,
that’s what is giving very good understanding and explanation for the development of such
kind of camber lines. So, here what all we are discussing, that’s what will be giving you some
idea. Later on, as per your expectation or as per your requirement, you can modify the

formulation of this line.

Say, here we are assuming our polynomial camber line equation as say (x — h)? = 4a(j — k).
That’s what we can say, it is a parabolic equation. Now, this is what is my second derivative.

If I will be simplifying that, this is what will be giving me the equation in sense of y = f(x).
Considering standard parabolic equation:
(x—h)? =4a(y — k)
On simplification,

2l DL S S
Y="48.a 2% xme

Here in this case, ‘h’ is nothing but the position on the x axis where the second derivative,
that’s what is maximum, that’s what is of our interest. ‘k’ is the value which the second

derivative has at that point and a, b, ¢, h and k, they all are the constants.
L = axial chord length
B = functional value at x = L

Now, in order to get the solution for this equation, we need to find this constant, say, what
constants we are looking at, that’s what is say a, b, ¢, h and k, those all constants we can achieve
by putting different boundary conditions. So, we are putting very first boundary condition. We

cansay at y = 0 and x = 0, we will be getting the value of some constant c.



Determination of constants following the boundary conditions:
(1) y=0atx=0

h4-

AT

Same way, if we are considering our boundary condition at say leading edge, what we have
defined at say x = 0, my first derivative, that’s what is equal to tan ;. So, that’s what is giving

me the value of constant B.
Slope at Leading edge

(2) x =0,y = tan(a;)
3

h
> b= (12—61) + tan(al)
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Polynomial Camber line
Considering standard parabolic Equation
(x-py :4a[_r—k)
On simplification,

1
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&' 15 the value whach the second derivative has at this point
Here a, b,e, b k are constants

1L = axial chord length

B = functional vahie at x= 1

Determination of constants following Slope at Leading edge

the boundary condifions : (2)x=0, = tan(a;)

1
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(1) y=0arx=0

Now, what we know, as we have discussed for many, say airfoils, we need to have slight
camber, that’s what need to be provided at the leading edge. In order to have that as a
configuration, we are putting our boundary condition, as we have discussed, this is what is at

x = 0, my second derivative, that’s what | am writing as P X (3)max, that’s what will lead to

give me the value of ‘k’ as well as the value of ‘P’.

(3) y=PX (y)maxatx: 0
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1

h2
where P =m+

hZ
k=i aaop

Now, we know what is the slope at our trailing edge. Based on that, we can calculate what will

be the value of ‘a’. So, here in this case, we will see, we are having say constants we are

calculating a, b, c and k.
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Polynomial Camber line

¢ The said four conditions used alone tend to produce a blade
whose curvature to be highest at the trailing edge.

This could result in large deviation angles and correspondingly
higher losses.

+ Therefore, a condition need to be imposed on the second
derivative at the trailing edge whereby its value could be
specified as something less than the maximum.

This boundary condition can be phrased in exactly the same
manner as used for leading edge.

—

(5)a=Ly=0x(i)_ (T)x=L,y=8

L L-h)'
Shs s I Ul WL W
-0 a2
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Now, as we have discussed, we are also looking for say trailing edge configuration. We need
to take care of what is happening with our say deviation angle. In order to have that inline to
what we have done at the leading edge, we will be doing, say putting boundary condition as
say leading edge what we have done. So, here in this case, at x = L, my second derivative | am
writing as some value of Q into second derivative which is having maximum value, that’s what

will lead to give me the constant ‘h’.

(5) x= Ly=0QX (j})max

Now, you know, we are having five constants and we are having, say different equations. We

can say L? + B? = chord?, that’s what is based on my trigonometry.
(6) L?> + B? = chord?

And, here in this case, at x = L and y = B, if | will be putting those numbers, we will be

getting the value of this B.
(7)) x=1, y=B8B

B (L_h)4+k 2+b L+
= = — —_ .
48-a 2 ¢



Now, what all we know? We know all these constants. Now for a particular value of x, we can
calculate what will be the value of y. And that is how we will be generating the coordinates,

say coordinates, say x coordinates and y coordinates.

So, you know, in order to have the development of our pressure surface as well as say for
suction surface. In line to this for camber line; here in this case, this camber line, that’s what

can be developed by using this particular equation.

(Refer Slide Time: 13:03)

Polynomial Camber line

Input Parameters:
(@) Stagger angle in degree( £ )

(B) Lemgih of chord inem | chord |
(¢) Location of meximum thickness from leading edge in% of chord (2)
|d) Leading edge radius (cm) ivie)
(e) Trailing edge radius (em)ivie)

 f ) Maximum thickness to chord ratio in% (1)

.| L

(g) Number of points to be generated on each of pressure and suction surfoce
| ) Leading edge angle of inclination of the camber line in degree fa)

(i) Trailing edge angle of inclination of the camber line in degree fa )

( j) Normalized curvanire of camber line af the leading edge (0= P< 1)

(k) Normalized curvature of camber line af the trailing edge (0<0< 1) pfagy application (=0.5

* For most applications, a value of P = 0 is quite satisfacfory.
* Toward the hub of a compressor, it may be desirable io give "P* small posiiive values
Toward the tip, ane might wish to use slightly negative valies of ‘P
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Now, let us see what all input parameters we are looking for in order to develop this camber
line. Suppose say we are looking for polynomial camber line. We are looking for data as say
stagger angle. We are looking for say length. We are looking for say, maximum thickness in
sense of percentage chord, leading edge radius, trailing edge radius, maximum thickness to
chord ratio. We will be looking at number of points to be developed for each, okay. We are
looking for say leading edge angle, that’s what is a;, trailing edge angle (a,). We are also
looking for say normalized curvature of camber line at the leading edge, that’s what we say as
P, that’s what is in the range of O to 1.

Same way, normalized curvature of camber line at the trailing edge, that’s what we say as Q.
Conventionally, it says like Q, that’s what is having say value in the range of 0.5. For most of
the application, we are not considering say we will be having say camber or say slight camber

at the leading edge and that is the reason why P equal to O, that’s what is quite satisfactory.

Towards the hub region when we are developing the camber line for say hub region where we

need to have P value to be slightly smaller or say that’s what is a positive value we need to



consider; near the tip region, we need to consider this P value to be negative. So, this is what
will give us idea how do we develop say polynomial camber line. | am sure, this is what will

give you idea how exactly we will be developing this line.

Now, in order to develop this kind of camber line, you need to write the program, say you
know, suppose if | consider I am having blade, for that blade, | will be having number of
stations and for all those stations we are looking for the camber line and based on my «, and
a,, If I will be putting these numbers, taking care of all this what all we have discussed, we

will be able to develop say polynomial kind of say camber line.

(Refer Slide Time: 15:23)

Exponential Camber line

+ For 'S’ shaped configuration, demands to locate the inflection
point anywhere on the camber line, the blade angle at that
point should be independently specifiable.

+ The flexibility need to be applicable for overall blade cambers
which are posilive, Zero, or négalive.

+ The smooth transition across the inflection point should occur
smoothly but rapidly so that a long straight region is avoided in

the middle of the blade.

For more promising approach, let’s define the camber line with
two equations, one either side of the inflection point.

Let's consider Exponential Equation:

j=b(x-5)e")

Polynomial Camber line

Input Parameters:
(@) Stagger angle in degree( & )

(b) Lemgth of chord in em | chord |
(¢) Location of meximum thickness from leading edge in% of chord (2)
|d) Leading edge radis (cm) ivie)
(e) Trailing edge radius (cm)iyie)

(f ) Maximum thickness to chord ratio in% (1)

N

| g) Number of points to be generated o each of pressure and suction surfoce
| h) Leading edge angle of inclination of the camber line in degree fa)

(1} Trailing edge angle of inclination of the camber line in degreefa, )

( j) Normalized enrvanire of camber line ar the leading edge (0= P< 1)

(k) Normalized crrvature of camber line at the wrailing edge (0<0< 1| gy application (=0.3

* For most applications, a value of P = 0 is quite satisfactory.
*  Toward the hub of a compressor, it may be desirable fo give "P* small posiiive values
Toward the tip, ane might wish to use slightly negative values of ‘P
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Now, second camber line, that’s what we say is an exponential kind of camber line. Now, what

is happening here is for say polynomial kind of camber line, we are not having much control



in sense of formation of say curve for specially camber line. Suppose, say | want to develop
Multiple Circular Arc kind of configuration or Multiple Circular Arc kind of airfoil. Under that
condition, we need to put some extra location here. So, this is what we can say, this is what is
a location at say some point s. We say that as say inflection point and this is what is some angle

a.

So, what we will be doing? We will be putting some point, that point, we will be having control
on that. So, we will be having say one line up to some location. We will be having second line
up to some location and that is how we can go with the development of this kind of say camber
line. So, here in this case, we will be using two different equations. As I discussed, we will be
having say one equation of camber line up to this inflection point. We will be having second

camber line equation that’s what is from say inflection point to the trailing edge.

So, let us consider, say exponential kind of equation. So, this is what is the equation, what we

are considering, say

j = b(x — 5)e®*=)

(Refer Slide Time: 17:03)

Exponential Camber line
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Now, suppose if we consider, as we are discussing, we are considering the location from my
leading edge to some inflection point, this equation we can write down, say as y1. We will be
having some constants ai, bz, ¢1 and d; and L as we have discussed, it is an axial chord and this

is what is a function of say x = L.



0<x <Swheres = >t
X wnere —100

The final equation:

b
Y1 = —éeal(x_s)[al(x -8)—2]+c x+d,
1

Here a4, by, c1,d, are constants
L = axial chord length
B = functional value at x = L

Now, in order to solve this, we need to put certain boundary conditions as we have discussed.
This boundary conditions, that’s what will remain similar to what all we have discussed in

earlier case. We are looking for five boundary conditions.

First, that’s what we have discussed is y; = 0 at x = 0, that’s what will be giving me constant
di. When | am taking say x = 0, this is nothing but this is what is my slope as we have
discussed. That’s what will be giving me my second constant as say ci. You can do pen paper

calculation in order to check with what all numbers we are putting here.
Determination of constants following the boundary conditions:

(1) y;=0atx=0

b
=>d1=(a1-s+2)x—§><e‘“1'5
aj

(2) y; =tan(ay) atx =0

b -
:clztan(a1)+(a1-s+1)xa—%xe ays
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Exponential Camber line
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Now, as we have discussed near this leading edge, we may need to look for say slight camber
and that is the reason why we are incorporating this boundary condition where we can calculate
what will be the value of say constant P.

3) y1=PX (yl)max atx =0
= P = al S . e(l_al's)

Same way, now, we are reaching at location x = S. So, in previous case for polynomial camber
line, what we have done, that’s what is say at leading edge and trailing edge we have given the

boundary condition.

Here in this case, we will be putting this boundary condition at say inflection point. So, this is

what we are putting at the inflection point.
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Exponential Camber line
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Now, if you look at, say we are having two values of constant cz, that’s what we have received

by considering x = 0 and slope factor.
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Exponential Camber line
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, (tan{a )=~tan(a, ))
=gt

1'\-[”1-.\'-[}(' A "

Dr. Chetan 5. Mistry

And, this is what is say my second boundary condition. So, based on that if we are solving, we

will be getting the constant b.

(4) x =35, y=tan(ay)

by
= ¢; = tan(ag) + Py
1



from boundary condition — 2,

b
¢, =tan(a;) + (a; s+ 1) x a—; X e~d'S
1

From (2) and (4) of c;,we will get:

, (tan(ay) — tan(ay))

- (a;-S+1)e @S
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Exponential Camber line

. . 8L
S<x<L where § = M /\ .
—_—  Naa
ey i
The final Equation :: A 7
b oy ')
..‘=_..‘,\I~H[“‘[‘_”_‘,]H_‘ 1+ds / {7
Y ° ) : /St B
h | // /
Here ay by, ¢y, dy are consiants / /
ll(f_ _l_(_l(“ {u .( y //
V‘rl
e =
Determination of constants following the boundary conditions: ‘XL @ 41

(5) w=§ar y,=tan|a, )

by
=i, |+ =
0y

(6)x=S, y = p

5[ b
]

\
-ll.“.ﬁ'-‘:'l -0 |+=.f1
o a)

=dy=1

Dv. Chetan 8, Mistry

Now, let us move towards the next location. So, this is what is my next location. So, my
equation, that’s what will be written as say y».. We can say, this is what all are the constants a,
b2, ¢2 and do. Again, we will be putting our boundary condition at say inflection point. So, at

x = s, we will be having y, = tan(ay), that’s what will be giving me my constant ca.

s L
0<x<SwhereS =—

100
The final equation:
b, a,(x-5)
y2=ge2 [a,(x —S) = 2]+ ¢, x+d,
2

Here a,, b,, c,, d, are constants

Now, when we are putting this location, this particular location, we need to be very careful
what point we are discussing about ‘s’ that needs to be a smooth point. So, you know, like the

line what we are drawing, that line need to be smooth at this connection point; and that’s what



we are putting here. At x = s, we are putting y; = y,, and that’s what will be giving me second

constant as say do.

(5) x =S aty, = tan(ay)

b
= ¢, = tan(ay) + a—i
2

6) x=S, y1=y,

b, b,
:>d2:2 _3__3 +S(C1_C2)+d1
a; a4
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Exponential Camber line

5L
S<xel where § = = //A\ S
7][“'] //.T _f-:ﬁiﬁ‘”
(The=L, yy=tan(as) f/ AF
h /// - \
¢y mtan(a )= ge" it \'-c[u; [J—.\'!—I} S ‘/ B
7
From (3) and (7)ol ¢, we will get 4 g 4
, #
b= @ (L‘In|rr_~ )= tan(a, )) " ]
(14{ay (1= 5) 1)) 11
(852 =0y} arx=L —
=0=4, “13"*’-]““““ {L-5))
(9)2 + B =chord"

(10)x=L,y=8

b a5 :
2 B=2xd*Nay (L-5)-2] 40y Ledy
ih -

Now, you know, we will be putting say next boundary condition at x = L near the trailing edge,
that’s what will lead to give me say second value of c2. Again, if you will be solving these two
values of constant c2, we will be able to achieve the value of constant b. And, same boundary
condition in order to consider your deviation angle configuration, we will be putting the
boundary condition of second derivative and its maximum value, that’s what will lead to give

me the value of Q.

S<x<LwhereS ="t
X wnere —100

(M) x =L, y, = tan(a,)

b
= ¢, = tan(ay) — a—§ x e L= x [a, - (L — §) — 1]
2



From (5) and (7) of c,, we will get:

as(tan(a,) — tan(ay))

b2 = U (@ (1=95) + D)

(8) Vo = Q(yz)max atx =L
Q= ay x (5 — L) x e(1+0-5)

We know what is my L? + B2, that’s what is chord? and at x = L, and y = B, that’s what will

be giving me the value of B.
(9) L? + B? = chord?
(10)x=1L, y=B

b
5> B=—=2xe2tNa, - (L-S)—2]+c, L+d,
a;

Now, all these parameters, that’s what will be helpful to us in order to develop the exponential

camber line.

(Refer Slide Time: 21:06)

Exponential Camber line
/A\ ¥,

* The equations obtained o determine ‘3, and *a," ( Equations for /S N\ aa

Pand Q Jare implicit, and require iterative solution. . /,/\ 7

S Y .&a‘
*In each case, there are two solutions for the constant (assuming /// \
. 1
Pand Q to be less than unity). Yoy B

* To meet the requirement of magnitude of the second derivative
reach its maximum value between the inflection point and "
leading or trailing edge, as appropriate, it follows that \ L

Dv. Chetan 5. Mistry

So, let us look at this exponential camber line. Now, as we were discussing, we are having say,
different values of P and Q. In order to have say, special requirement at the inflection point, we
need to be little careful of and it says we need to have our a; value, that’s what is my constant

value a; and constant value of a that need to be selected in this particular range.



<—
2597

Because we can say, | will be making my curve here, | can make my second curve here. But
when we are having this connection, it should not have any jump, it should be smooth one and
that’s what is very important. And, that’s what we can consider by providing particular

boundary condition and selecting these numbers, okay.

(Refer Slide Time: 21:58)

Exponential Camber line

Input Parameters:
(@) Stagger angle in degree( £ )

|B) Lengtir of chard incm | chord )
(¢) Location of maximum thickness from leading edge in% of chord (z)
() Leading edge radius (cm) (vle)

(¢) Tratling edge radius (cm)ivie)

| f | Maximum thickness o chord ratio in% (1)

| &) Number of poinis fo be generated on each of pressure and suction surface
| ) Leading edge angle of inclination of the camber line in degree fa,)

(1) Trailing edge angle of inclination af the camber line in degreefa, )

| 1) Normalized enrvature of camber line af the leading edge|0< P< 1)
|k | Normalized curvature of camber line at the rrailing edge(0=( <1}
1) Location of point of mflection in % of chord from leading edge ()

(m) Angle of inclination of camber line at point of inflection |degree|ia, )

Dr. Chetan 3, Mistry

Now, suppose say, if you are looking for development of, say, exponential camber line; again,
what all we are looking for is say our stagger angle. We are looking for the length of the chord,
location of the maximum thickness, leading edge radius, trailing edge radius, maximum
thickness to chord ratio. We are looking for say leading edge angle, that’s what is say, a,. We
are looking for a,. Same way, here, we are looking for say, constant value of P and Q. Two
additional points we need to care for here, that’s what is the location point of inflection in

percentage chord. So, we are looking for where exactly we want to put our inflection point.

Are we looking for this inflection point towards the leading edge? Are we looking for, say, this
inflection towards the trailing point? At what location? That’s what is very important and that’s
what we are defining in sense of percentage chord. At the same time, you know, we are also

interested in putting the inclination, okay. At what inclination we are putting this line that will



make the shape of my airfoil. So, if you recall when we were discussing about the Multiple
Circular Arc airfoil, we are having say different kind of configuration where we required for

managing our flow towards the trailing edge. Okay.

(Refer Slide Time: 23:30)

Double Circular Are Camber line

Let's take the Equation as:

(s (3= =

(%3, ¥y )1s the center
R 1s the radius of circle.
Here L = axial chord length

B = functional value af x= L

Determination of constants following the boundary conditions

(3y=0arx=0

(1)x =0,y =tan{a, ) .
. 25+ =k

= Xy = =y tan |, | . .

(4)L +B° = chord"

(2)x=L, y=1an|a,)
” (S)r=L,y=h

=(B=yy)xtan(ay)=xy= 1L X ..
S(L=xy) #(B=yy) =R

Solving above equations, the set of values of the variables which
includes posifive values for both Land B is only taken info account
.

Double Circular Are Camber line

Input Parameters:
(@) Stagger angle in degree( & )
(b) Length of chord in cm | chard |
(¢) Location of maximum thickness from leading edge in% of chard (2)
(d) Leading edge radius (enr) (vle)

(e) Trailing edge radins (cm)(vte)

() Maximum thickness to chord ratio in% (1)

(&) Number of poimis io be generated on each of pressure and suction surfoce
() Leading edge angle of inclination of the camber line in degree fa,)

1| frawing edge angle of mcrinaiion U. e camber [ine in gegree fa, |
Trailing edge angle of inclination of the camber line in degree (a,

Dr. Chetan 3, Mistry

Now, Double Circular Arc airfoil or say Double Circular Arc camber line, what we are looking

for, that’s what can be represented in sense of this equation:
(x = x0)* + (y — y0)* = R?
(x0, Yo) is the center
R is the radius of circle

Here, L = axial chord length



B = functional value at x = L

And based on that, if we will be putting our boundary conditions, the same boundary condition,
what all we have discussed in sense of condition 1, condition 2 and say this condition 3 based
on that and we will be having our Pythagoras law, we will be able to achieve what all we are
looking for in sense of coordinates for my camber line. So, this is what is for Double Circular

Arc camber line.
Determination of constants following the boundary conditions:
(Dx=0, y; =tan(e,)
= Xy = —Yo tan(a,)
(2)x =1L, y=tan(a,)
= (B — y,) X tan(a,) = xy — L
B)y=0atx=0
= x3 + y2 = R?
(4) L? + B? = chord?
(5) x=L, y=B
= (L—x0)* + (B — yo)* = R?
Solving above equations, the set of values of the variables which includes
positive values for both L and B is only taken into account.

Now, there are different methods, people, they are opting with different kinds of Double
Circular Arc camber line. This is what is one of the methods. One more method, that’s what
has been discussed we will see. Now in order to develop this Double Circular Arc camber line,

here in this case, this is what is straightforward. We are having say three boundary conditions.

That’s what is sufficient for us and based on that, we can say, we can put our stagger angle.
We can put where we will be having maximum say thickness, we know, that’s what is at the
50% of my chord. What will be my leading edge radius, trailing edge radius and, you know,
what will be my angles @, and a,. That’s what will be sufficient condition for development of

Double Circular Arc camber line.
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AX,, from mid-chord to the center of the nose radius at the
trailing edge is given by

AY, =(R, -r,)sin(6, /2)= /21, cos(6)2)

where 0 is the blade camber angle

AY, =R, = W0)=1,/2+ 1, sinl6)2)= R, -d
whered = y{0)+1, /21, sin(62)
After iterations,

Dol Gl re o B di-r +[<' 2-7, cos(d 2]]E

k Ad-n)

K, = Lower surface arc radii of curvature
Ry = Upper surface arc radii of curvature
Re-= Camber line radius of curvature

Source: Ronald H. Aungsrr, “Axsal flow Compressars: A srategy for serodynamic design and amalysas”, ASME, 2003

Dv. Chetan 5. Mistry

DCA Airfoil

The upper surface circular-arc extends through polar angles from
0/ 2100,/ 2, constructed using the radius of curvature, Ry,
and the location of its origin at

x=0 and y=y(0)#+, /2R,

where for Circular camber line, 2y(0)/c = tan (#/4)

Leading edge and Trailing edge radii are about their centers at
y=r,sin(f/2) and

x=|c/2=rcos(f/ 2}] to bend with circular arc.

Source: Renald H. Aungser, “Asul-flow Campressars: A srategy for serodynamic dewign and asalyss”, ASME, 2003

Now, as | was discussing, this is what has been discussed by Aungier in his book. This is also
for the development of Double Circular Arc airfoil, rather defining in sense of Double Circular
Arc camber line. So, what they have done? Here in this case, we will be having maximum
thickness, that’s what has been placed at the 50% of chord and upper surface and lower surface
coordinates that’s what is he has been kept with. This is what is representing the upper radius.

This is what is representing the lower radius.

We can say, pressure surface as well as the suction surface and this is what is for say my camber
line equation. So, my coordinates Ax, that’s what we can calculate based on trigonometric rule.
Ay for upper surface also can be calculated based on the trigonometry. Now, this 6, that is

nothing but which is representing my camber angle.



AXy, from mid — chord to the center of the nose radius at the trailing edge
is given by
AXy = (Ry — 1) sin (92_11) = ¢/, — 1y cos (g)
where 0 is the blade camber angle
AYy = Ry — y(0) — /5 + rysin(?/y) = Ry —d
where d = y(0) + tb/z —1ysin(9/,)

After iterations,

d? —r¢ + [/, — 1o cos(a/z)]2
2(d —1p)

RU:

R; = Lower surface arc radii of curvature
Ry = Upper surface arc radii of curvature
Rc = Camber line radius of curvature

Now, in order to achieve this curvature or say radius of my upper surface, we need to go with
the number of iterations solving this upper surface and lower surface. And, that’s what will
lead to give the radius of my upper surface, that’s what is as a function of this d, what is my ro,
that is nothing but my radius at the leading edge, what is my chord, what will be my camber
line or camber angle. So, this is how we can achieve our upper surface or upper radius. In line

to that we can achieve what will be our lower radius. So, this is also one of the method.

Other people, they are developing the Double Circular Arc airfoil with some different
approach, different methodology. So, here in this case, this is what is representing Double

Circular Arc kind of camber line.
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Multiple Circular Arc Camber line

+  The multiple-circular-arc camber line has potential for defining //\ ¥
a camber line composed of two segments, either or both of Ty A ¢
which may be either circular ares or straight lines, in principle.

* The most interesting applications of this capability probably
involve the creation of "S-blades," composed of two circular
arcs, and "J-blades" composed of a straight-line and circular-arc
combination.

5L
O<x<S where § = — —
100 [

Assuming camberline 10 be straight line near LE

Fquation:

¥y = lan(a )-x é
Here L = axial chord length

B = fimetional valwe af x= L

Di. Chetan S. Mistry

Now, let us move it what all we are more interested in or say for future development of our
transonic airfoil, that’s what is say Multiple Circular Arc. We can say, that’s what is of S kind
of shape. So, in line to what all we have discussed for our exponential kind of say camber line,
we will be using the similar kind of logic but here, this is what has been developed in a different
way. So, here in this case, also we are looking for say, inflection point. So, this is what is my

location for inflection point and this is what is my inflection angle.

Now, up to from leading edge to my inflection location, we will be considering one curve, one
line or we can say one camber line and from say inflection point to trailing edge, we will be
considering other line, okay. Now, there are different methodologies, different authors,
different researchers, different companies, different universities, they are developing their own
camber lines for Multiple Circular Arc. Here in this case, for the sake of simplicity, what we

have done, say up to our inflection point, we have considered this as a straight line.

So here, this equation, we can say, that’s what is given by y; = tan(a;) - x, we can say this is

what is the equation of straight line.

0<x<Swheres =~
X wnere —100

Assuming camberline to be straight line near LE
Equation: y, = tan(ay) * x

Here, L = axial chord length; and B = functional value at x = L
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Multiple Circular Arc Camber line

S<x<l where S= +L
100

Lquation
2 1 ‘]
(x=Xo) #(y=yo) =&

Wherexy. vo. R are constants

Determination of constants following the boundary conditions.

(Nx=0, jy =tan(e | (3r=0arx=0
Sp=- \'“Iamlﬂ, ) = 'T; +.l'(.|. - R: Bexe§
(2)x=L, y=tan(a;) {_”;.3 + B = chord®

2(B-yp)ctan(my)=x-L  (5)r=l y=p

=(L-x,) +(B-yp) = R

Solving above equations, the set of values of the variables which includes positive
values for both L and B as well as minimum value of L is only taken into account

Dv. Chetan 5. Mistry

Now, in order to have the other line, say this is what is from inflection point towards the trailing

edge, that’s what we can consider as a circular arc. So, this is what is

0<x<Swheres = >t
X wnere —100

Equation:
(x —x0)* + (y —¥0)* = R?
where x, Vo, R are constants

Now, in line to what all boundary conditions what we have discussed, we will be putting those
boundary conditions here. So here in this case, if we are putting our boundary condition, that’s
what will lead to give us all the variables, all the constants. Now, once we have derived with

the constant, we will be calculating our x and y coordinate for the camber line, okay.
Determination of constants followng the boundary conditions:
(Dx=0, y; = tan(e,)
= xo = —Yo tan(a;)
2)x =1L, y=tan(a,)
= (B — yp) X tan(ay) = xy — L

B)y=0atx=0



= x5 +y& = R?
(4) L? + B? = chord?
(5)x=L y=B
= (L—x0)* + (B —y,)* = R?
Solving above equations, the set of values of the variables which includes positive
values for both L and B as well as minimum value of L is only taken into account.
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Multiple Circular Arc Camber line

Input Parameters:

(a) Stagger angle in degree(£ )

|b) Lengthof chord in cm |chord |

() Locarion of maximum thickness from leading edge in of chord (z)
() Leading edge radins {cm)vie)

() Trailing edge radius jem )(vie)

(| Masimum thickness ta chord ratio in % (1)

' L
(g) Neof pointslo be generated on each of pressure and suction surface s .
b
() Leadiig edge angle of inclination of the camber line in degree fa, )
1

(1) Tratling edge angle of tnelination of the camber line in degree (a, )

(i) Location of where circular arc staris from f('mﬁ!m edgein of chord r.\j|

Dr. Chetan 8. Mistry

Now, in order to develop this Multiple Circular Arc camber line, additional parameter what we
are looking for is a location from where the arc that will be started with. So, as | told, like for
development of Multiple Circular Arc airfoil, many people they are considering two circular
arcs, say initial circular arc, second circular arc and based on that they are developing say
Multiple Circular Arc camber line. This is one of the methods what we have discussed. We
will be having straight line, that’s what will be followed by the curvature or we can say that

will be followed by circular camber line.

So, as per how we want to manage our flow on the suction surface of our blade, we need to
modify or we need to make the airfoil or we need to make our camber line. So, once we are
ready with our camber line, very next question that’s what will be coming is how do we put

our thickness?
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Thickness Distribution _
Standard thickness distribution: A

2l P

Oexel where 7 = — 7 \ g o
100 s I = i
c/’ AN
Considening third order polynomial for Leading Edge region: 7 KA
/
3 5 1
WEax +hxt sexed /// / @ ]
g
/ /
Phara . ¢ COHEITHTE 7 Y
Where a, b ¢, d are constants A\ 4/

L is known ) [

Determination of constants: ' L
L

(1)x=0, j =0 (Ba=Z =1 (4)x=2, 3y =0

=2b=0 :\:r-—“\-'r:l' :,‘_zl-‘if-mi
(2)x=2, 3= e (22) (22)

hord
=d=syy Where T =13 ot
100

So, let us move towards say, having the distribution of the thickness. So, for transonic airfoils,
say, specially when we are considering the thickness distribution, that’s what has been defined
in sense of say, polynomial, say third order polynomial. So, here we are considering, suppose
if you are considering the location somewhere, up to somewhere some location, somewhere
location we can say, that’s what is say my maximum thickness location. We can say this is

what is my z location.

So, it says in between 0 to z or say from leading edge to some location, we can say, we will be
selecting third order polynomial thickness distribution. That’s what is say, a - x> + b - x? + ¢ -
x + d; where a, b, c, d they all are the constants. And as we know, in order to solve these

equations and in order to get this constant, we need to put different boundary conditions.

Standard thickness distribution:

0 < x < Zwherez = 2L
X wnere —100

Considering third order polynomial for Leading Edge region:
yi=a-x3+b-x*+c-x+d
where a, b, c,d are constants
L is known

So, this boundary conditions are say, at x = 0, we will be putting say second derivative of this

equation to be 0 and that’s what will be giving constant B. At x = Z and y1, we will be putting



our leading edge. We will be having d = y,. Same way, at x = Z and T, this capital T, that’s
what we are defining in sense of thickness to chord ratio, okay. And, this is what is my third
boundary condition. In line to that, we will be putting our fourth boundary condition and by
putting this boundary conditions, we will be able to achieve what are the constant a, b, c, d for

this equation.
Determination of constants:
(1) x=0, y;,=0
=>b=0
2) x=12, y, =yle
=>d=y,

B)x=Z, y,=T

N :_(T—}’o)
(2-23)

B T_txchord
where T = 100

(4‘)X=Z, y1=0

=>c= 3—(7(12__;;)
Now, as we know, this is what we are saying as an axial location. It is not the chord, this is
what is my axial location. So, we will be selecting different x values, and for those x values by
having this constant, we will be able to achieve the y values, okay. So, that is how we will be
calculating our thickness distribution on suction surface. We will be able to calculate the

thickness distribution on our pressure surface, specially up to some location Z.
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Thickness Distribution

Standard thickness distribution:
)
100

Zexel where?

Considening third order polynomial Equation for Trailing Edge region

yy=e(x-2)'+ f(x-Z) +g(x-2)+h

Where e, [ g hare constanis
Determination of constants:
(Jx=Z, y,=T Blw=1
=hsT :r__l:H—r‘,l
(2)a=2, jy=0 (22°) —
=g=0 (4)x =L, yy=yte

Se(L-2) myte-f(x=-2) -T

To avoid inflection point on the blade surface we must have — #-——>1
! F

Now, you know, later part, say towards the trailing edge, there also we are taking say third
order polynomial but we know in that particular region, we are looking for the management of
shock in a different way. So, third order polynomial equation, that’s what is been defined in a
different way. So, this is what is the equation, that’s what people, they have defined with. As |
told, there is nothing, that’s what is fixed. You can use your own equation based on your

requirement.

Maybe based on your computational study, you can modify this distribution, okay. So, this is
what is representing how my value of y, that’s what is varying with the x, we will be putting
different boundary conditions at Z and this is what is at, say my trailing edge location. We will
be able to achieve the distribution of the thickness on say, suction surface as well as on the

pressure surface towards the trailing edge side, okay.

Standard thickness distribution:

7 <x<Lwherez =21
X wnere —100

Considering third order polynomial Equation for Trailing Edge region:
y,=e(x—2)P3+f(x—2)?+g(x—2Z)+h

Where e, f, g, h are constants



Determination of constants:
Dx=Z2 y,=T
>h=T
2)x=2Z y,=0
=g=0
(3) y1 =72

_ (T — yo)
2=y

4) x=1L, y, =yte
se(L—-2)83=vyte—f(x—2)2-T
To avoid inflection point on the blade surface we must have

f
Z——>1
3-e

Now, in order to avoid the inflection point on the blade surface, it says we need to take care of
f

3-e

Multiple Circular Arc; for that Multiple Circular Arc, we are having the inflection point, we

this number. So, Z — — > L . We can understand when we are discussing, we are selecting say

have inflection angle. And, when we are doing our distribution of the thickness for suction
surface as well as for the pressure surface, it should give the smooth curve and that’s what is

need to be managed.

Any jump or any sharp edge, that’s what has not been allowed or permitted when we are
discussing say transonic kind of airfoils or when our flow that’s what is say supersonic flow,

okay.
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Thickness Distibution N

Circular arc thickness distribution:
Vex<ZwhereZ -2k
100

Equation:
2 2 2
(y=xg) +(0=20) =&

Where x,g, v,g. R, are constants

Determination of constants:

{Hx=Z, p=0

=a,=Z
(2)x=0, y = vle
=274 (yle-y ) = B
(3JxmZ, y=T
=(T-m J: = RI-‘
chovd
100

WWhere T w1 x

Now, some of the literature, it says you can go with say circular thickness distribution also. So,
we can say, we will be going with say circular arc thickness, that’s what is given by x minus x
and this is what is y. So, in order to avoid the confusion, there is nothing at x;,, it is just for
segregating from other constants, okay. And, we can use this circular arc thickness distribution
up to some location as we have discussed by providing different boundary conditions, we will
be able to achieve different constants. When we achieve, we derived the constants, we will be

getting say values of x as well as y.

Circular arc thickness distribution:

0<x<Zwherez =2t
X wnere —100

Equation:
(x = x10)* + (1 — ¥10)* = Rf
Where x14, V10, Ry are constants
Determination of constants:
MWD x=2Z y,=0
= X9=2
(2) x=0, y; =yle

= 7% + (yle — y10)* = R}



BR)x=Zy, =T
= (T—)’m)z = R%

chord

h T=txX
wnere 100

Now, this is what all we are discussing that’s what is very hectic process when we are doing
pen paper calculations. So, it is advised that you just learn some coding...some coding tools,
maybe by using say your C, C++ or MATLAB. Using those say program language, you can
develop your own code, you can develop your coordinates x and y for say suction surface, you
can develop your coordinates for x and y for say your pressure surface. Even you can develop

your own camber line.

You can play with the equations and that’s what will be giving you what all we are looking for.
As | told, there is no superficial rule for having say thickness distribution to be followed by
this equation only, okay. As per the expectation what all you are getting, if it is solving your
purpose, your expectation, your required result that’s what is your airfoil. So, maybe it may be
possible that you will be going through the development of airfoil you can name that airfoil as
your own name. Yes, this is what is possible. So, whole lot of scope, that’s what has been laid

in sense of development of these airfoils.

So, people initially they are going with say computational study; using CFD they are
developing this kind of airfoils. Later on, in order to build the confidence, they will be doing
cascade testing, you know better now. Based on those cascade testing, they will be having
performance map and that performance map, that’s what will be used for the future

development of blades.



(Refer Slide Time: 37:31)
A

Circular arc thickness distribution:

Z<x<l whow 2tk
100

FEaaiton:
5 -
(¥t ) +(3y =y ) =R

IWhere xyy, 1y, Ry are constants

Determination of constants:

(l)x=Z,y,=0
Saysd
(Z)aml, py=pic e rvyam
=(L=2) +(yte=pyg) = B}

(3)x=d, yy=l

>(T=yy) =&

Dv. Chetan 8. Mistry

Other Important Aspects

+ The leading edge need to be closed using circular arc.

* The trailing edge can be closed by joining the end points of upper and lower half thickness
curve using a siraight line, —

* (G Calculation: '

= P
5f 4 e ( 2, + 0, ) [Tyag H1a)
Inell x e ple tu“ll{lh"; :zl 2 S ! 18y = 4y )x I_‘

smfm) o (m, 4, ) (hyai +1,)

FTJ.! royle 4 yle o E‘I ; (85 = 34 )2 ; y.da
et (o #1,) [t [ [e—
=2 ==+ } (80 =%5) &y
J' 1 |)\':\ R x [J.r ) IJ.I

Where xm and ym are camber line coordinates, 1, is thickness of the
airfoil and (s, - s, ) is distance befween fwo consecutive points on
thickness ctirve

To stack the airfoil about CG

MEx-x &k y=y-y,

.f!'”' GH ny ('“U"“‘”?(H{"

Dr. Chetan 3, Mistry

Now, towards the trailing edge also, you can use the same circular arc thickness distribution.
Similarly, you will be getting your x and y coordinates. And, this is how you can have the

distribution of thickness for transonic airfoils.

7 <x<Lwherez =2t
X wnere —100

Equation:
(x = x20)* + (¥ = ¥20)* = RS

where x5, V20, Ry are constants



Determination of constants:

WD x=2Z y,=0

=Xy =2
(2) x=1L, y, =yte

= (L—2)* + (yte — y30)* = R}

B)x=Z, y,=T
= (T —y20)* =R}
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Comparison of Different Camber lines _

Cascade Parameters
1) Chord Length = 8.6 cm

2y Solidity (c/s) =2

3) Flow turning (i, - 1) = 48.4 degree

4

5

6

7)  Leading edge radius (yle) = 0.04 em

8 P=025

9)  Trailing edge radius (yte) = 0.02 cm

10) Q=05

11) Location of point of inflection (if applicable) = 60% of the chord

Stagger angle = 16 degree
Maximum Thickness at 20% of chord

Maximum thickness value = 7.4 % of the chord (6.8% in exponential )

12) Inclination at the point of inflection (if applicable) = 70 degree
13) Thickness Distribution: Circular arc thickness distribution
14) Entry Mach Number = 0.70

De. Chetan 5. Mistry

With this all understanding let us take the case for the development of say cascade. Now, let
us take some of the cascade parameters. Say, let us we are assuming say chord length as say
8.6 cm, solidity as say 2, turning angle 48.4°, stagger angle 16°, maximum thickness at 20% of
chord, maximum thickness value is 7.4% of the chord, leading edge radius we can say is 0.04

cm, value of P is 0.25. Trailing edge radius is 0.02 cm, Q value is say 0.5.

The location of the inflection point, that’s what is at the 60% of the chord. The inclination at
the point it is say inflection angle we can say is 70° as and where it is applicable. The thickness
distribution, we can say, the circular arc thickness distribution, we will be considering our inlet
Mach number to be 0.7. So, with this all input data, let us try to generate the airfoils what all

we have learned.



Cascade Parameters

1) Chord Length = 8.6 cm

2) Solidity (<) =2

3) Flow turning (a; — a,) = 48.4 degree

4) Stagger angle = 16 degree

5) Maximum Thickness at 20% of chord

6) Maximum thickness value = 7.4% of the chord (6.8% in exponential)
7) Leading edge radius (yle) = 0.04 cm

8) P=0.25

9) Trailing edge radius (yte) = 0.02 cm

10)Q = 0.5

11)Location of point of inflection (if applicable) = 60% of the chord
12)Inclination at the point of inflection (if applicable) = 70 degree
13)Thickness Distribution: Circular arc thickness distribution

14)Entry Mach number = 0.7
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Comparison of Different Camber lines

Palynomial DCA

Exponential a,=30° MCA 5=45%

Exponential u=40° MCA 5=60%

So, here in this case, if we will be putting all those input parameters, this is what is representing
different kind of say camber lines with say thickness distribution. So here, this is what is
representing my polynomial kind of camber line. This is what is representing say exponential
camber line. This is what is a 70%. Location, we say, it is an inflection point, it is placed 70%

and my «a, that’s what is angle we are putting 30°.



Suppose if you are putting that as a 40°, you can see the variation of the shape of this airfoil.
You can clearly see the difference between these two. Same way, if you are considering say
Double Circular Arc kind of configuration, this is what is Double Circular Arc configuration.
Now when we are considering say Multiple Circular Arc, as we have discussed, this is what is
my straight line. We can say my point that’s what is placed at say 45% of my chord. So, this is

what is representing my second circular camber line, okay.

And this is what is the same circular distribution of my thickness. This is what is when we are
having, say, my inflection point, that’s what has been placed at the 60% of my chord. So, we
can see the clear difference, clear variation that’s what is happening by changing the position
of my inflection point for say Multiple Circular Arc camber line.

(Refer Slide Time: 40:49)

Comparison of Different Camber lines

Polynomial
Exponential ag=30°
= == Exponential u;=40°

TE

—— MCA 5=45%
=== MCA 5=60%

Now, here in this case, this is what is a representation of different camber lines. So, you can
say, this red one, that’s what is representing my polynomial camber line with all inputs, what
we have discussed. We will be having say exponential. Here in this case for the exponential,
when we are having our ag, that’s what is inflection angle, that’s what is 30° and 40°. We will
be having clear variation, that’s what is happening upstream condition, just look at, even

towards the downstream condition also.

So, the location of this inflection point, that’s what is very important. We need to be very
careful about that point. This is what is representing my, say, Double Circular Arc. Same way

for, say, this black colour, that’s what is representing Multiple Circular Arc and this is what is



representing how my camber line for the same thickness distribution, how the blades or the

airfoils they are being generated with.

Now, with this, we can say, we are able to generate the airfoils and after generating this airfoil,
we will be managing our flow passage. And, by managing our flow passage, basically we are
managing our shock structure. We are managing the placement of our normal shock and that
is how we are managing our diffusion within the flow passage. And, that’s what will be helping

us for development of future more efficient airfoils.

So, this is what will give some feeling of special kind of application with different kind of
camber lines and circular arc thickness distribution. Now, in next week, we will be discussing
about how do we design those transonic compressors. Thank you very much for your kind
attention! And | am sure, this is what all will be giving you some different kind of feeling with
say, development of transonic airfoils and transonic compressors. Thank you. Thank you very

much!



