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Basics of Turbulence Modeling (continued) 

 

In this last lecture on turbulence modeling, we very briefly discuss about large eddy 

simulation and direct numerical simulation.  
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In this approach which we very briefly discussed in a previous lecture on turbulence 

modeling, we separate the large eddies from small scale eddies or small scale vortex motions. 

And how do we do it? We use a so-called filtering approach. The filter variable will be 

indicated by an over bar. We have used over bar earlier also in the context of Reynolds 

averaging. So, we have to keep track that where a particular symbol is meaning what.  

 

So, if we are filtering a function f of x over a region D, then that can be achieved to a filtering 

function G which can be defined accordingly. So, the filtration is attained. Now, the filter 

function again over that region should also satisfy this property that when integrated, it 

should give you a value upon. There are different kinds of filters which you can think of, one 

of the most common types of filters is what is called as a box filter. If you look at its nature, it 

is like. This it is often called as a top hat filter also.  
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There could be a more smooth filter like a Gaussian filter which looks more like. This should 

be 6x square by delta square. So, apart from the filter function, very important thing that we 

need to keep in mind is the filter size delta. That means on what width or what length scale 

we are applying the effect of the filter. How does it matter? Because depending on the length 

scale that we are fixing for us ourselves.  

 

So, if this is delta the filter width that we are talking about, then any structure which goes 

below that filter width automatically gets filtered. That means it is un-captured or unresolved 

by LES. Any larger structure compared to delta would get directly resolved in LES or directly 

captured because there is no averaging that you are applying which will smooth out the 

effects.  

 

Unlike, what we did in the runs approach. We did time averaging which would do some kind 

of a smoothing. Again in terms of the wave number space I hope you recall the idea of the 

energy spectra.  
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When it comes to the filtered Navier Stokes equations, let us see how they look like. So, 

continuity equation looks like this. Keep in mind that now, this means filtered quantity, not 

Reynolds averaged. So, typically u i would now be written as filtered or resolved and the 

dash quantity is unresolved. So, this is part of the large eddies. This is part of the small eddies 

which we are not directly capturing but you are going to capture their effects indirectly.  

 

So, through the so-called sub-grid stress or SGS which will discuss. As far as Navier Stokes 

equation is concerned, again remember about the repeating indices. Here, the index j is 

repeating here again j is repeating and so on. And this is an equation a conservation for the ith 

component of velocity. Now, these equations essentially model the large scale motion. Now, 

energy is being fed into the turbulent structures from mean flow.  

 

And then they are percolating from the large scales which you are directly computing into the 

smaller scales which you are modelling. That is the basic strategy in largely simulation.  
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Now, we bring in the concept of the residual stresses through the sub-grid scale stress tensor. 

R stands for residual. This has a structure very similar to what you saw in the Reynolds 

stresses. So, this is the mean of the product and this is the product of the means. So, this is 

somewhat similar to what you see here also in the sub-grid scale stress tensor. So, this is 

standing for the entire flow. This is standing for the resolved flow.  

 

And then the difference stands for the unresolved flow. That is the concept. Based on that we 

have a definition for the residual kinetic energy that means the kinetic energy contained in the 

unresolved scales which comes from the tau i j R tensor by just looking at its diagonal 

components. So, this evidently is. So, this is again the k e contained by the entire flow, the 

kinetic energy of the resolved flow.  
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This helps us to model the anisotropic part of the residual stress tensor which has a 

superscript small r which is represented in terms of the sub-grid scales stress tensor. This is 

SGS part and a portion coming from the turbulent kinetic energy of the residual structures 

and this is familiar to you, this is the Kronecker delta. So, the contribution from the residual 

kinetic energy would be absorbed in pressure like we saw even in Reynolds average Navier 

Stokes equations.  

 

So, the modified pressure will be represented like this. This should be suffix k r suffix. Now; 

having worked out these things. 
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Now, you can go back to the filtered Navier Stokes equations and you can rewrite them 

slightly in terms of tau i j R and tau i j small r. So, you will be finally able to show that the 

equation can be represented like this. This is p modified which will still represented by p bar 

only and then comes the anisotropic part of the stress tensor and the viscous contribution. 

Now, in order to solve this equation we model the anisotropic residual stress tensor, model 

the tau i j small r.  
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So, usually we use eddy viscosity based models which we have discussed in the context of k 

epsilon model for example and make use of a characteristic filtered rate of strain. And how 

do we define that? That may be defined by doing a scalar product of the filtered rate of strain 

or rate of deformation tensor. And then the eddy viscosity is again expressed in terms of 

Smagorinsky length scale which is analogous to mixing length.  
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And finally that length scale is expressed in terms of a product of a constant which is often 

called Smagorinsky key constant and is of the order of 0.17 and the grid or rather the filter 

size and the characteristic filtered rate of strain which we already defined. Therefore, you 

have a definition eddy viscosity to use in modeling the anisotropic residual stress tensor. So, 

this is how this Smagorinsky LES model is formulated.  

 



Remember that in large eddy simulation could go for a wall modelled, large eddy simulation 

where near to the wall instead of resolving very close to the wall. You try to use the law of 

the wall kind of relations and then try to impose the large eddy filtered approach beyond that 

level when you go into the core part of the flow. In certain more accurate methods, we do a 

wall resolved LES where you go very close to the wall.  

 

And so, the y plus values are close to 1. So, this is a very brief overview of the large eddy 

simulation approach where as we mentioned earlier that we are capturing or resolving part of 

the flow which exists in the form of large scale structures and we are filtering the rest. And 

modeling that part through the so called sub-grid scales stresses. And we had a brief overview 

of how the sub-grid scale stresses are modelled through an eddy viscosity kind of approach.  
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Let us have a brief look at direct numerical simulation. So, here since we are not modeling 

any part of the eddy structure, we are expected to have very fine grid because we are ideally 

supposed to capture the Kolmogorov length scales and traditionally two approaches have 

been followed in direct numerical simulations; one is the spectral method often in the form of 

Fourier collocation method.  

 

But very often we have the constant of applying them only to periodic problems. That means 

problems where periodic boundary conditions have to be imposed and accurate finite 

difference or finite volume calculations. Again apart from the very fine grid that we need to 

have, we need to use numerical schemes with low dissipation and dispersion error. Again we 

need to generate time dependent solutions with high time accuracy.  



 

So, that events which are occurring at very high frequencies can also be properly captured 

and in order to resolve all the scales of motion right up to the Kolmogorov levels. If you want 

to estimate the number of grid points that you need for a certain length scale say L. You need 

to take a ratio between L and eta the Kolmogorov scale and that is usually of the order of the 

Reynolds number for the large scales raised to the power of 3 by 4.  

 

And therefore in the 3D simulation, you can easily estimate that this grid number will scale 

with N cube and therefore R e l to the power of 9 by 4 which is a huge number usually. So, if 

R e l is of the order of say 10000, then that basically means that N cube will be of the order of 

10 to the power of 9 which is an enormous number and therefore direct numerical simulations 

are extremely expensive.  

 

And therefore cannot be used on a routine basis in industry. In fact, it can be very rarely used 

for industrially relevant problems at all in the current scenario. For industrial problems, runs 

is the best choice and then if we need more details of the flow, it is absolutely essential then 

LES is the next choice. As far as the different numerical schemes which would be suitable for 

carrying direct numerical simulations.  
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As far as spatial discretization is concerned, you can think of compact schemes which we 

have seen from our earlier exposure that they have very good spectral resolution or in the 

wave number space there they have extremely good behaviour numerical behaviour. So, they 



are often used in centered or upwinded form. If we are not using compact schemes then we 

could go for higher order explicit schemes.  

 

But then the problem would be that the stencils will become extremely large and maintaining 

high accuracy at the boundaries is a big challenge. We also need higher order time 

discretization for which the best candidates could be Runge-Kutta type of schemes and then 

you would have superior accuracy as well as enhanced numerical stability if you are using 

Runge-Kutta schemes.  

 

But typically for primitive variable approach in incompressible flows that would mean that 

you would have to carry out the pressure velocity corrections number of times within a given 

time step because Runge-Kutta schemes split up one time step into several sub steps. So, just 

having a brief look at Runge-Kutta schemes because they are extremely good in enhancing 

accuracy and stability and therefore ah good candidates for direct numerical simulations.  

 

So, if you are writing your equations in flux vector form in an R-K (Runge-Kutta) scheme 

you would actually do the sub-step calculations in this manner where you start from the nth 

time step calculations and then take it forward by doing a number of sequential calculations 

of this kind. We are showing a modified R-K scheme here of fourth order which means that 

you also have an enhanced formal accuracy.  

 

So, as we mentioned that because there are so many sub-step calculations while you reach the 

n plus 1th time step value from the nth value. Therefore, in all these sub-steps you have to 

keep the pressure and velocity fields at bar. So, that divergence free field is assured. So, that 

remains a challenge. So, if implementation becomes extremely expensive this way, you may 

need to look at other schemes which are usually second order.  

 

For example, you can think about Crank Nicolson or Adams Bashforth schemes and these 

schemes are multi-time step schemes and therefore no sub-step calculations are involved.  
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Also, you need to have appropriate boundary conditions in order to enhance accuracy of the 

simulations. Just as an example say if you are solving flow past a certain body which is 

immersed flow if you look at the flow moving past the body and creating vortex structures 

which reach the outflow region in an incompressible flow.  

 

If the outflow boundary condition is not well posed then there could be disturbances 

numerical disturbances propagating upstream from the outflow boundary which may affect 

the formation of these structures. So, sometimes we tend to set the Neumann boundary 

condition that the gradient of the dependent variable is equal to 0 but a still better way of 

modelling, it could be that you try to model linear advection equation for the variable.  

 

So, that would mean that you try to set an equation of this kind for the variable and solve it. 

So, this is often a better boundary condition in order to suppress such numerical errors 

accruing from the boundary. So, we have to think about appropriate boundary conditions and 

they are very accurate implementation numerically. So, that they do not become a source of 

numerical errors and corrupt the solution.  

 

Another very important point that we have to keep in mind is that because of the enormous 

computing load, we have to use parallel computing where we try to compute by sharing the 

load or distributing the load across several nodes; sometimes hundreds or even thousands of 

nodes. So, that the calculations can progress at a reasonable speed without which it may turn 

take months to finish a single computation with this we come to our to the end of the module 

on turbulence modelling. Thank you. 


