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In this lecture, we continue our discussion on interfaces. So, in the previous lecture, we had 

discussed about the interfacial condition for the mass flux across the interface. And we 

showed that in the case of viscous fluid, it is simply equal to u 1 = u 2. Now, we also 

mentioned that we have to look at the stress tensor part in order to look and explained the 

next two equations. 

 

And  we also remember that  surface tension plays a role in defining how stresses are going to 

occur at the interface.  
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So, we briefly introduced the concept of surface tension in the previous lecture,  where you 

will recall that we introduced the concept of  the minimization of free energy. And that 

expression included the surface tension coefficient and the infinitesimal interface surface 

area. So, let us proceed with  expanding this concept a little further.  

(Refer Slide Time: 01:40)  

 

So, if we try to look at the mechanical viewpoint, from a mechanical point of view, surface 

tension is a force or unit length acting perpendicular on any line segment in the surface. So, 

last time you may recall that we had  drawn an elemental surface in order to define the 

surface tangents in a three dimensional sense. So, if you just recall that three dimensional 

surface that we drew with  u’s and v’s drawn on it. 

 



Then if you look at the periphery of that surface on any point located on the periphery, you 

will have a p and say at t defined on the surface p is a vector perpendicular to the edge of the 

element. But,  tangent to the surface essentially means, that this is part of a bigger surface. 

So, the p is perpendicular to this edge in the sense that it is making a right angle to that edge. 

But it also remains tangent to this surface. 

 

So, this is how p is defined. And  so, in the context of surface tension, we can say that if p is 

the vector perpendicular  to the line segment. Like it is perpendicular to the edge of the 

element here. The pull felled by the line segment is simply sigma p, remember p is a vector 

per unit length. So, this is the idea. So, this would have an effect of stretching the surface 

when this pull is acting.  

 

And suppose that if you are pulling in the x direction and the surface has an extension say L 

in the other direction. So, in that case stretching it increases the area by some amount ds is 

equal to say L times dx. And  this would happen at the expense of some  work done. So, that 

work done will be sigma times L dx or sigma ds and  this increases the interfacial free 

energy.  
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And  using these concepts, we can further show that the surface force per unit area if you are 

expressing it as f sigma that will be indicated as sigma times Kappa times n plus sigma s 

times sigma. Remember that this is the surface tension coefficient. This is the curvature term. 

This is the unit normal, is of course, a vector and  usually, when  you have a constant surface 



tension then that would lead to reduction of this expression or simplification of the expression 

in the sense that the second term will then go to 0.  

 

Now, this  again you may recall that  the Nabla S which operates on sigma, it is  essentially 

the surface gradient. We had talked about the surface gradient in the previous lecture. And as 

long as we have a constant surface tension we are reducing the expression to a  much more 

simpler form f sigma equal to sigma k n. So,  once you do that and you apply the 

conservation of momentum principle to the control volume that we drew earlier.  

 

If you remember we had the interface drawn like this and we had an elemental control 

volume drawn across that portion of the interface. If you apply the conservation of 

momentum principle to this control volume on the interface, then you can write it as.  So, you 

remember that this is the stress tensor. So, the integration is around the edges of the control 

volume,  the control volume happens to be this say the delta V.  

 

As far as these two terms are concerned the first two terms are done that way. And therefore, 

we have represented it as elemental surface area dS, which is comprised of the periphery 

whether whereas the volume is  what is enclosed. And the first term for incompressible flows 

it can be easily shown that it this will go to 0 because, as you remember, we had shown in the 

previous lecture that this term is unique uniquely 0 for both the phases.  

 

And in the absence of phase change, of course, it will give you a net m dot equal to 0. Right.  

Now, we can show that by rearranging the remaining terms, this can be written as the jump 

kind of nomenclature that we explained last time. And just to keep it simple, we are writing it  

by assuming constant surface tension. So, this is essentially the form and this equation now 

has to be split into normal and tangential stress condition.  

 

And if you do that, then you will be able to understand how the jump conditions are being 

implemented here. So, these are the two jump conditions, one is coming from the normal 

port, the other is coming from the tangential part of that equation. So, the normal part is the 

first one while the tangential part is the second one and in this expression  these D with 

superscript k are essentially the tangent vectors that we had defined in the context of the three 

dimensional elemental surface.  

 



If you recall that we had considered two such orthonormal tangent vectors and we took a 

cross product in order to correlate that with the surface normal unit normal. So, that is how 

the whole set of equations connect with each other. So, now, we have a more complete 

definition of the jump conditions at the interface and then  when you are looking at the 

conservation equations in general applicable for the bulk fluids in the two phases.  

 

Let us say fluid 1 and fluid 2 then the bottom two equations will apply separately for the fluid 

1 and fluid 2 regions and when it comes to the interface, you have to ensure that these 

equations are applicable at the interface. So, that the jump  across that interface is suitably 

implemented.  
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Now, we come up  with a very popular kind of formulation, which is called as the one fluid 

formulation. So, we will quickly go through the points. So, we have discussed about  

capturing the interface  using sharp interface approaches  where the density viscosity values 

experience a jump across the interface while  there could be diffuse interface approaches 

where the local face  the  property changes can be occurring in a more diffused manner across 

the interface.  

 

So, these are the two possible ways. So, in the previous approach that is in the sharp interface 

approach, which is  through say heaviside function or parametrize function, we solve the 

governing equations separately for each phase and use jump conditions for coupling the 

solutions at the fluid interface. We just finished discussing the jump conditions in the 

previous slide in fact.  



 

Now, if we  look beyond this approach, we can think about one fluid formulation approach 

which is possible when you write one set of governing equations for the whole flow domain. 

So, we are going to use one set of equations and we are going to apply to the whole flow 

domain where the various phases are embedded anyway, but we are not going to resort to 

jump conditions.  

 

So, we are not resorting to jump conditions across the interface. So, it is a smooth 

representation of the interface and accordingly the jumps will be accordingly smoothed out in 

a certain manner. So, that we continue to use the  single set of governing equations with a 

smoothed out version of jumps. And we do not enforce the jump conditions per se. So, of 

course, if you do not do that, you have to tackle the variation across the interface in some 

other alternative manner.  

 

And that alternative manner in this case would be introduction of some kind of a source term, 

which gives you  an analogous effect in the form of a car kind of forcing, which explains 

where the interface is. That means in spatial sense at a specific time instant, if in some 

regions of the flow,  we are finding that the forcing terms are becoming active, then those are 

the regions which form a part of the interface.  

 

So, in this approach the various phases are treated as one fluid, but with variable material 

property. So, we have to keep in mind that we do not have distinct definitions of two or more 

fluids  separated by interfaces, but rather as if the same fluid is moving around with variable 

material properties in different regions and these different regions form different phases.  

 

So, these material properties could be density, viscosity, specific heat,  thermal conductivity 

and other transport properties in general, which can change abruptly and the phase boundary 

but for all practical purposes, the abrupt change here basically means a kind of smooth out 

change as far as the computational implementation is concerned.  

 

Now, in order to account for extra  forces at the phase boundary, it is necessary to add similar 

terms to the equations and these are the source terms we were talking about, which have to be  

introduced into the momentum equations, which are essentially the counterpart of the jump 

conditions for sharp interface approaches.  
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So, going a little further into it, the solution can change discontinuously across the interface, 

we must either interpret the governing equations in a weak sense, where they are satisfied 

only in an integral sense or admit solutions that include generalized functions such as delta 

functions and step functions that is heaviside functions. So, these are two possibilities. So, if 

it is discontinuous change, it is a sharp interface case.  

 

If it is through  application of generalized functions that we introduce certain source terms in 

governing equations and try to simulate  the interface then it is talking about the diffused 

interface. And moreover, if you have discontinuous changes, then you have to treat the 

equations in weak form.  Note that the derivation of one fluid equations is identical to what 

we do for basic governing equations, except that we need to add the surface tension as a body 

force and this is a very important issue here.  

 

Surface tension has to be added as a body force to the momentum equations. And then that is 

the only change by assuming that there are no phase change effects. So, if there are for the 

phase change effects, then you have to consider the mass exchanges at the interfaces. So, one 

phase may vanish to some extent converting itself to the other phase and so on. And there 

could also be implications in terms of the energy conservation.  

 

Now, in the one fluid version of Navier Stokes equations, then we have the interfaces  

accommodated in the form of a forcing term due to surface tension and this has  a form which 

we have discussed earlier and we are introducing the delta function and remember that as 



long as this x falls somewhere on the interface, which is defined by this S, then the delta 

function becomes active.  

 

And therefore, you have a spike font in that region. So, as long as you lie anywhere on the 

interface, then this term will become active and you are essentially integrating over an 

elemental area as you go along the interface that way and you are considering that you know 

the surface tension  is essentially constant and that is what makes the representation of f 

sigma simpler in the form of only sigma k n which we have discussed earlier.  

 

So, the constant  surface tension  is therefore, an assumption here further we may   add a little 

bit on the continuous surface force, which we had indicated here or often abbreviated as CSF.  
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So, that is essentially an approach which interprets surface tension as a continuous 3D effect 

in general across an interface, rather than a boundary condition on interface and a volume 

force due to surface tension on the fluid elements lying within a finite thickness transition 

region which defines the interface replaces the discontinuities. So, this is essentially the 

concept and  this aligns with the assumptions of the one fluid approach.  

 

So, we had a basic look at how the governing Navier Stokes equations would then have to be 

modified when you try to look at it from one fluid perspective.  
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This could be a good time to also look at another alternative approach which is called as two 

fluid model, which is more intricate than the one fluid model, but is also widely used in 

multiphase simulations. So, if we look at the points in a two fluid model, the dispersed phase 

is treated as a second continuous intermingle phase, which is interacting with the continuous 

phase.  

 

And  the effective conservation equations of mass momentum energy are developed for the 

two fluids and solved computationally and they would include interaction terms, which 

model the exchange of mass momentum energy between the two flows. Therefore, the two 

fluid models neglect discrete nature of disperse phase and approximate its effect upon the 

continuous phase itself.  

 

Now, you have to keep in mind that this effect is  primarily coming in through the interaction 

terms as we have mentioned in the third point. And in this  approach, there are certain 

averaging processes which are necessary to characterize the properties of the dispersed phase 

and they could also add on to the intricacies of the computations. There are more modeling 

issues also, which can add on intricacies of the competitions. So, to keep things simple, we 

are confining ourselves to the one fluid model. 
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Now, we learn quite a bit about  how jump conditions may occur across an interface and if 

you are solving the problem as a sharp interface problems, how these jump conditions have to 

be implemented through boundary conditions. And if you treat the interface or boundary as 

diffuse boundary, then there is also an issue of  how you try to advect the fluid interface.  

 

So, now, we will briefly discuss about advection of the fluid interface. Now, if we consider 

that the governing equations are being solved on a fixed grid with using one set of equations 

for the whole flow field, which is true for the one fluid model which we are going to further 

expand in the subsequent lectures of this module. The  different fluids must be identified in 

some way.  

 

So, you have to keep track of  where the respective fluid regions are located at. Now, in order 

to do that, we make use of a very important concept Marker functions, which we had briefly 

discussed in the context of level set.  Here, we will expand further on this concept and we 

notice that this Marker function will take up different values in the different fluids. And this 

is a very very important concept for example, we had earlier shown that in one fluid. 

 

When we treat it as a sharp interface region, the heaviside function can take up a value of 1, 

in another fluid, it can take up a value of 0. So, that was a sharp interface definition. Even in 

the sense of diffuse interface, you can distinguish by assigning certain Marker functions. And 

we will try to discuss  on what these Marker functions are all about. So, as the fluids move 

the boundary between the different fluids they would change location.  

 



And therefore, the Marker function has to be accordingly updated. If the material derivative 

of the Marker function is set to 0, individual fluid volumes carry along with them the Marker 

function values as they move through the flow domain. So, if I say that a Marker function is 

given by M, then what it means is that the substantial derivative of M is going to be 0. Each 

fluid element carries along with it a certain information about M, a certain value of M.  

 

So, whenever this fluid element is moving around to different regions of the flow, it is always 

carrying along with it the particular M value that it is carrying. So it has the Marker 

associated with it always. So a fluid element has the Marker associated with it. In course of 

its movement that is something we have to always keep in mind and mathematically it is 

represented through the material derivative equal to zero condition.  

 

Now, when methods are used, where Marker functions are deployed, we say that we are using 

so called front capturing methods and when we use Marker points, then we have front 

tracking methods. That means as though there is a region which is carrying certain Marker 

function of a certain value M = 1. This is another reason, M = 0. And this front is advancing 

in some manners, then we are using Marker functions to demarcate the two phases.  

 

While there could be approaches by which we have a collection of points which are moving 

through the domain and the collection of points define the front. So, if we have such Marker 

points, and we are tracking those Marker points, we have so called front tracking methods 

and if we have Marker functions and we are tracking them. We have the front capturing 

methods.  
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To identify whether a given fluid i is present at a particular location x, we use the heaviside 

or step function H i x and that is defined through this function that H i x =1 if the vector x lies 

in fluid i; r is equal to 0 if the vector x is not in fluid i. Of course, the vector x is essentially 

carrying locational information. Now, in the absence of phase change, each fluid particle 

retains the H i x value during its motion.  

 

Of course, remember that whenever I am talking about heaviside function, we are talking 

about sharp interface. Now, since we are discussing one fluid model, where we are actually 

going to take the route of diffuse interface, we are not going to perpetually carry through the 

concept of heaviside function, but when it comes to implementation, we will change the word 

mainly to Marker functions.  

 

But those Marker functions will depend on how we connect them with the heaviside function 

description which is nothing but the sharp interface description of the problem. So, that 

dependence always has to be kept in mind. Now, as long as it is the sharp interface and there 

is no phase change, a fluid parcel or a fluid element will satisfy the material derivative of H = 

0 condition like what we described in the previous slide.  

 

So, as the interface moves, the shape of the region would  change and the fluid particles 

would retain their identity as the shape of the region changes. Now, we introduce one of the 

Marker functions which is called the as the volume fraction or color function C, which is 

defined as the spatial average of the heaviside step function. Now, before we do that, we have 

a quick look at the heaviside function itself.  



 

So, in a two dimensional plane, it is comprised of product of delta functions integrated over 

an elemental area. So, when x lies in the region  or rather when x lies in the region covered by 

x dash and y dash and y lies in the region covered by x dash, y dash, then these respective 

delta functions will give a spike in their values. Because if you recall from our  earlier 

courses in mathematics, the direct delta functions have a spike like behavior.  

 

So, we say that the delta function could be defined as delta x equal to positive infinity, if x = 

0 and is equal to zero, when x is not equal to 0. And additionally, when you integrate it from 

negative to positive infinity, this gives you a 1. So, the function looks like this. We have a 

very large spike here. So, you are using such delta functions here and integrating and that 

gives you the heaviside function in 2D.  

 

And that you are spatially averaging in order to give you the so called volume fraction or 

color function C. And remember that heaviside function or delta functions, they are, they fall 

under the category of generalized functions and these functions are used for discontinuous  

represent, I mean  with these functions, discontinuities can be represented in a smooth 

manner.  

 

So, from there we are able to get a tool, which will act as a Marker function which we are 

naming as volume fraction or color function. And that C can take a value of one for cells, 

which are away from the interface and cells which are full and C = 0 if they are empty. So, if 

the interface is located somewhere in a given cell, C for that cell has a fractional value. So, 

that basically means that C can live within this region. So, we will discuss more on this in the 

subsequent lecture. Thank you.  


