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Classification of PDEs 
 

In this lecture, we are going to look at classification of partial differential equations, but 

before we discuss that we will have a quick look at the incompressible Navier Stokes 

equations, which we could not complete during the last lecture. 
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You can see the two-dimensional incompressible Navier Stokes equations in the screen. It is 

comprised of mass conservation and momentum conservation equations. So, the mass 

conservation equation is more often called as a continuity equation because it is two-

dimensional Navier Stokes equation. So, you have 2 components of velocity respectively u 

and v and both of the velocity components are functions of x and y.  

 

You can see partial derivatives of the u component of velocity in other equations where they 

could be derivatives with respect to x or y and similarly it is true for v. So, therefore, u and v 

are both functions of x and y. You can see the first term on the left hand side which is called 

as the unsteady term. That means any time dependence in the flow can be captured using 

such a term while the other two terms are more often called as the advective terms.  

 



You have a pressure gradient term on the right hand side of the equation like you saw in 

Euler equation, but this is a term which is very typical of Navier Stokes equation, which is 

arising due to viscous stresses in the flow, and therefore we often call these terms as viscous 

terms. Note that they involve second order partial derivatives. You did not see second order 

partial derivatives in Euler equation for example. 

 

Incompressible Navier Stokes equations assume that the flow behaves without any effect of 

compressibility which means that any variations in pressure in the field would be 

accompanied by variations in the flow field velocities, but it cannot affect the density. That 

means pressure and density are decoupled from each other in an incompressible situation. We 

will look at incompressible Navier Stokes equations in more detail in due course. 
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We now look at how to classify a system of partial differential equations. When we classify 

of course we recall having looked at these terms elliptic, parabolic and hyperbolic and we 

need to know that when we are looking at a partial differential equation which kind of partial 

differential equation it is, and this classification is very important for us to be known ad hoc 

before we try to approximate the partial differential equation and try to solve it numerically. 

 

Because the discretization that you apply would depend on the kind of partial differential 

equation you are handling. We would first look at a single partial differential equation how to 

classify that, and we will consider it to be a second order partial differential equation and then 

we will have a quick look at how to handle a system of partial differential equations and 

classify them. 



 

But we would like to have such a system of partial differential equations as a first order 

system of partial differential equations. So, note the difference; in one case it is second order 

when it is a single partial differential equation, while in the other case where we handle a 

system, we are looking at a system of first order partial differential equations.  
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When it comes to classification of a single partial differential equation, you can write it down 

in a form like this, where you can see second order partial derivatives written of the 

dependent variable φ and φ is a function of two independent variables x and y. In this case, 

we are assuming that there are only two independent variables. In that case, you can have 

these three possible partial derivatives of second order. One is purely with respect to x, 
2

2

x
 

 

another purely with respect to y, 
2

2

y
 

while the other is a mixed derivative 
yx

 2
. 

 

Additionally, you can have lower order derivatives, which means first order derivatives in our 

case 
x


,

y


 and the variable φ itself with a constant coefficient and then this is a purely 

numerical constant K or it could be purely a function of x and y that you have in a term like 

this. The whole equated to zero gives you the partial differential equation. Now, if you bunch 

all these terms comprising of first order derivatives, the variable itself and constants and 

bunch them together as a term S on the right hand side of the equation, then you are left with 

the higher order derivatives only on the left hand side of the equation along with their 



coefficients, which will make a difference. These are the coefficients which will finally 

decide the behavior of the partial differential equation whether it will be elliptic or parabolic 

or hyperbolic.  

 

Now, how is it that a, b, c are going to decide that. For this, we need a characteristic equation. 

You may recall that when we were looking at the linear wave equation, we wrote the 

equation in this form and we plotted the behavior of this equation using a line like this in the 

x-t plane, where we said that this straight line has a slope dx/dt = a, this is a typical 

characteristic curve or line. 

 

Now, when you are looking at a solution of a second order partial differential equation like 

we have shown over here, the solution will actually turn out to be a curve in the x-y plane. 

So, this is a space curve. Let us say it looks like this and then you will find that on this curve, 

which is essentially a solution of the partial differential equation, there are some specific lines 

which exist which are responsible for carrying information in a way similar to how this line 

carries information in a linear wave equation.  

 

However, sometimes such lines exist while at other times they may not exist. So, they may or 

may not exist and our job is to find out that for a certain partial differential equation whether 

we have such lines existing on the solution ),( yx . We have to remember that the 

characteristic equation of the above PDE would have to be obtained in order to extract 

information regarding the behavior of the PDE. 

 

So, in order to obtain the characteristic equation of the PDE, we make use of two very 

important facts. One is that since we are handling a second order partial differential equation, 

the second order partial derivatives are indeterminate along these specific curves, which we 

are calling as the characteristic curves. However, the first order derivatives will remain 

continuous.  

 

Based on these two facts, we would be able to obtain a condition for which characteristics 

either exist or they do not exist and that is the basis on which we have a certain determinant 

shown over here. This equation basically is an outcome of the determinant. What you saw as 



the dx/dt = a information for a linear wave equation is actually figuring in the form of dy/dx 

information in the x-y plane for a second order partial differential equation here. 

 

So, they are kind of analogous. However, it is a little more involved to obtain the conditions 

under which you can have real or imaginary characteristics here. So, what you do is you 

essentially look at the discriminant of this quadratic equation in dy/dx and then based on 

acb 42  , you try to work out the conditions for the existence of real or imaginary 

characteristics.  

 

So, when you have the discriminant greater than 0, this leads to 2 roots of the equation, that is 

typically the case for hyperbolic partial differential equations. So hyperbolic partial 

differential equations have two real characteristics. When the discriminant becomes 0, then 

you are left with only one real characteristic because there is essentially one root. When it 

becomes less than 0, then it ends up giving you complex conjugate roots and that is the 

situation for elliptic partial differential equations.  

 

So, this is essentially the basis on which we try to classify a second order partial differential 

equation where there are two independent variables. The question is that what would happen 

if you have more than two independent variables? Is there a way that we can have for 

classifying such an equation? To figure that out, we will have to do a little more work, but 

before we do that, we work out a small problem based on what we learned just now.  
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Here is an equation which is used to solve steady two-dimensional velocity potential equation 

in compressible flow. So, φ is the velocity potential that we are talking about and this 

equation certainly has dependence on the free stream Mach number, which we are calling as 

M∞. If you take a ratio between local velocity and the sonic speed you get the local Mach 

number. 

 

And here you actually take a ratio between the free stream velocity and the free stream sonic 

speed in order to get the free stream Mach number. Now, based on what we learned earlier, 

we can figure out that the coefficients of the partial differential equation, which we call a 

small a, b c in this case would be looking like this. Only thing is that here we have written 

them as capital A, B, Cs.  

 

Now, based on this, you can of course work out what ACB 42   is and then if you do this 

exercise, you can get the behavior of the partial differential equation for a range of Mach 

numbers. You can do this as a small homework problem and see what happens when you 

have a Mach number which is less than 1, when it is exactly equal to 1, and when it is more 

than 1. So, as you know that 1M , this would be the situation of a subsonic flow, 1M , 

this would cater to sonic flow, while 1M , this would cater to supersonic flow. 
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We next look at a situation where you have a second order partial differential equation where 

there could be more than two independent variables. There could be a fairly large number of 

independent variables x1, x2, x3 up to xn, which means you have n independent variables. In 



this case, the equation can be written in a manner where partial derivatives would be written 

in the form of indices, where the j and k indices run from one to n. 

 

Then you have these coefficients associated with the partial derivatives and a possible source 

term like the one we had in the previous form of the partial differential equation, where many 

terms were lumped together into one term, which did not involve second order derivatives. 

So, remember that all the second order derivatives have to be expressed in the summation 

form, while the other terms account for the S term.  

 

Now, to classify this kind of a partial differential equation, we have to obtain a matrix and 

then that matrix would essentially comprise of these coefficients, which we have associated 

with the different second order partial derivatives and using the matrix, we can obtain a 

characteristic polynomial which looks like this where A is the matrix which is comprised of 

all the terms which come from the coefficients.  

 

So, the matrix which comes from Ajk terms and then λ will give you the eigenvalues and I is 

an identity matrix. So, if A is a NxN matrix, then obviously I also has to be a NxN matrix. 

After you work out this characteristic equation based on the determinant, you will be 

essentially having a polynomial whose roots have to be obtained. Roots of that equation will 

be the eigenvalues.  

 

So, you will have a fairly large number of eigenvalues if N is large. Now, you look at how the 

eigenvalues are like. So, if any of the eigenvalues happens to be 0, then the partial differential 

equation will be characterized as a parabolic partial differential equation. If all eigenvalues 

are nonzero, and all values are of the same sign, then you have an elliptic partial differential 

equation.  

 

Again, if all eigenvalues are nonzero and all but one value is of the same sign, then the partial 

differential equation is a hyperbolic kind. So a good exercise to do would be to go back to the 

previous example that we saw in the previous slide and try to put it into this framework and 

solve for the nature of the partial differential equation and see whether your solutions match 

by the two approaches. You could of course take even other equations and try them out. 
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The physical behavior of the different types of partial differential equations:  

We know that partial differential equations primarily cater to these two types of behaviors, 

the equilibrium type of problems and marching type of problems. So, what do we do in 

equilibrium type of problems? Let us see. The main thing is we use them for steady state kind 

of problem scenarios. We have had a look at Laplace equation previously, which models 

irrotational flow of an incompressible fluid. 

 

You saw that it actually gives you a steady state solution of the velocity potential of the flow 

field. You also saw the steady state heat conduction equation. So, these kinds of steady state 

problems are often called equilibrium problems and they are modeled using the elliptic partial 

differential equations.  

 

A very important feature of elliptic problems is that if you have a disturbance anywhere in the 

interior of the domain where you are solving the equation, then that disturbance affects and 

alters the solution everywhere else in the domain reaching farther out towards the boundaries 

and the disturbance signal propagates in all directions through the domain and they 

essentially propagate at infinite speed.  

 

So, there is no delay for propagation of the disturbance to all regions of the domain where 

you are solving the problem. So, these are very important characteristics of elliptic partial 

differential equations which are used for modeling equilibrium problems. There are another 

class of problems which we often call as marching problems and we will see that parabolic 

partial differential and hyperbolic partial differential equations fall in that category. 
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In marching problems, we can be solving transient heat transfer or we may be solving 

unsteady flows or wave propagation phenomena, where we can see the solution changing 

with time. These problems are governed by parabolic or hyperbolic equations and in these 

problems sometimes a particular flow direction can also act as a time-like coordinate along 

which we can march the solution. So, this is what we see in say boundary layer equations. 

 

In parabolic partial differential equations, we look at time dependent problems and those 

problems involve significant amounts of diffusion. These problems are used for solving 

unsteady viscous flows or unsteady heat conduction and these are mathematically stated as 

initial boundary value problems because the solution depends both on initial condition as well 

as boundary condition and when you look at the solution, you will find that a disturbance at 

any point in the domain can influence events only at a later point of time. 

 

They cannot influence backward in time, but they can influence events forward in time and 

they would diffuse the solution in space. So, these are very typical characteristics of parabolic 

kind of problems. Solutions always remain smooth in the interior and even if initial 

conditions contain discontinuities, they will never create discontinuities in the solution within 

the domain. The steady state may be reached after a very long time, and then the behavior of 

the equation maybe gradually approaching an elliptic one. 
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In hyperbolic partial differential equations, which could be used for wave propagation 

problems and vibration problems, one very important characteristic is that there is negligible 

amount of dissipation and therefore what happens is that if you have a certain disturbance 

with a certain waveform and amplitude, then there is no attenuation of the amplitude as time 

progresses, but you would find that the wave form would be propagating through the domain 

spatially without any attenuation or diffusion. 

 

Hyperbolic problems are also initial boundary value problems and they can accommodate 

discontinuities. In compressible flows, we can have discontinuities like shockwaves and such 

discontinuities can be accommodated in hyperbolic problems. A very important feature of 

hyperbolic problems is that the disturbances propagate at finite speed, whereas in parabolic 

and elliptic equations, the disturbance propagation speeds are infinite. 

 

Therefore, in hyperbolic equations, it depends how quickly the wave would be able to reach 

out into the domain to carry along with it information coming from a certain region of the 

domain to influence certain other. 
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Here we have a curve drawn in two-dimensional space and we are trying to understand how 

an elliptic partial differential equation would behave when we are solving it in a domain like 

this. So, in this domain if you look at a certain point you will find that information is 

propagating into that point from all directions and also information from this point can affect 

other points in its vicinity.  

 

That means, different disturbances can propagate and reach out to every corner of the domain 

and that too at infinite speed. For example, when you are solving 02    where φ stands for 

velocity potential, then you will see that with the given boundary conditions, it will give you 

a steady state solution. This means that from the solution of φ you will get a unique u and v 

field and it takes no time for the flow to reach that steady state u and v field.  

 

How does it happen? In this model of the flow, the disturbances can propagate out into the 

domain at infinite speed and therefore the flow would reach equilibrium in no time, and 

therefore you get a steady state u, v distribution instantaneously. If you look at it from heat 

conduction perspective, then in reality it may take some time for the temperature 

redistribution, especially if you are starting from a temperature distribution along the 

boundaries of the domain, which are different from inner part of the domain.  

 

However, the way we look at this problem here is that we are only concerned with the steady 

state solution of the temperature and then as long as 02  T is concerned, you just look at 



the equilibrium state. We will discuss about the parabolic partial differential equation in the 

next class. 


