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Lecture - 32
Numerical Solution of Linear Wave Equation (Hyperbolic PDE) (continued)

In this  lecture,  we will  continue our discussion on dissipation and dispersion behavior in 

linear wave equation. 
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Last time, we had modeled an equation of this kind. So, we slightly modified the original 

linear wave equation by introducing a term on the right hand side, which looks like this. And 

we had proposed a trial solution of this form. And then what we did was, we evaluated the 

value of the which would end up satisfying this equation exactly. And the background behind 

this  activity  was  that  we  had  learned  in  the  previous  lecture  about  the  modified  partial 

differential equation approach. 

And we found that  when we have an approximate  numerical  scheme,  which is  trying  to 

model the linear wave equation behavior. We essentially end up solving the modified partial 

differential equation. We do not end up solving the exact equation and we pay the maximum 

importance  to  the  leading  truncation  error  term.  So,  if  the  leading  truncation  error  term 

happens to be of this form. 



Then essentially you are modeling a partial differential equation of this kind when you try to 

solve the linear equation. If you are doing that then how would the solution get affected in the 

process?  So,  here  what  you  are  trying  to  figure  out  is  that  analytically,  how would  the  

solution change? So, now, you understand that there would be an additional term coming in 

here, because of the presence of the second order term on the right hand side. 

Because this term was not figuring when you had the solution for the exact wave equation. 

The exact wave equation was modeled purely by this part. So, this is essentially the outcome 

of the presence of the second order term on the right hand side on the solution and mind it, 

this is an analytical solution. Now, what is the difference between this and say,  the finite 

difference scheme that one uses. 

Remember that there are more terms here on the right hand side when you are actually using 

a finite difference form. So, here we have a much truncated form. So, if you are using an 

equation of this kind, you are able to generate an exact solution. While, if we were to include 

more and more terms on the right hand side, it would get increasingly difficult to come up 

with exact solutions. That is going to be a formidable task. 

So, because of that we are just considering one term on the right hand side and trying to find 

out what would be the impact on the exact solution. And that would give us a big indication 

towards  how the modified  partial  differential  equation  would be  held  in  case  of  a  finite 

difference approximation. So, that is the utility and the significance of this exercise. So, now 

we understand that if you look at this term, what role is it going to play? 

So, let us look at the term very carefully and try to see its behavior. So, we have this term, 

this  exponential  term.  Let  us  look  at  this  term very  carefully.  What  does  it  contain?  It 

contains some kind of a viscosity coefficient. Most often, if we are trying to link with the 

modified  partial  differential  equation,  this  is  a  numerical  viscosity  coefficient.  It  is  not 

connected with physical viscosity, but it is analogous.

So, most often this would be a positive number. So, we have to ensure that it  is actually 

positive. If it is, then what do we have further, you have k square that means the square of the 

wave number which is always going to be positive. And then you have time, time is always 



going to be approaching towards  the future.  That  means you are looking at  future times 

means you are always going to have positive times there. 

So, the only factor which can influence the sign of this expression is mu not as long as mu not 

is positive. What do we have here? This is going to be an exponential decay term that means 

the solution will get damped, if you have something like this. What would happen if in case 

mu not is negative, then this will exponentially blow up the solution. So, that is what we 

meant by artificial diffusion and artificial anti diffusion. 

Where the solution gets damped and where the solution blows up respectively. And this is a 

hugely significant term whenever you are dealing with partial differential equations of this 

form. Where the leading error term, if it is a finite difference approximation is a second order 

term or a even order term and we need to understand how this coefficient is behaving. So, we 

have seen in the case of first order upwind scheme for example. 

That as long as the CFL number was restricted to a value of 1 bounded between 0 and 1. This  

would  remain  positive  and  that  was  the  necessary  condition  for  stability.  So,  we  have 

understood now that for a partial  differential  equation of this form how the solution gets 

modified if you are using a dissipation term on the right hand side. 

Now, let  us do a few more experiments,  but before we do that  we also need to observe 

another important thing that here, if you look at the exponential town here you have k square. 

K square means the decay will be stronger for larger wave numbers. So, higher wave number 

or numbers decay faster, because higher wave numbers means higher k. Hard k means higher 

k square and therefore, a very strong decay. 

So, always we have to keep in mind that these kind of terms will damp the high wave number 

components to the greatest extent and the low wave number components that means, more 

gradually varying part of the solution to a lesser extent. That means, you are unlikely to find 

high frequency oscillations in the solution. This is a very, very important feature. 
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We look at linear wave equation with 3rd order space derivative on the right hand side. When 

we move from second order to 3rd order, we are essentially going from even to odd that is 

important. So, whatever we find here, by doing an experiment with 3rd order space derivative 

on the right hand side of the equation would apply in general for all odd order derivatives that 

means 5th, 7th and so on. 

So, how does the equation now look like? Let us change the coefficient to mu 1. And of 

course, the derivative is a 3rd derivative in space. Now, as usual, will go ahead with the same 

tans solution like we did before with the e to the power of bt term additionally, and again we 

are going to find out what that b is, which satisfies this equation. So, for doing that you need 

to first figure out how the 3rd derivative calculations work out because the rest of it the left 

hand side part is a very routine calculation.

So, let us do the right hand side calculations. For doing that we already know the expression 

for the second order derivative which we, which we had derived earlier.  So, we will just 

substitute that and this coefficient is mu 1. So, del del x operates on - k square u. So, - k 

square u was found to be the expression for the second derivative. 

So, when you apply the 3rd derivative, then you will be able to show it as - k square mu 1 

then del u del x that is I k u. We have already derived del u del x earlier and we showed it to  

be equal to I k u. So, finally, what are we having? We are having I k cubed mu 1 u. This is  

the expression for the right hand side term. So, what do we do know?  We just substitute all  



the expressions for the left and the right hand side remember that we had – I k a + b times u 

for the time derivative. 

I k a u for the space derivative are more importantly the term.  So, here there is a small 

change. So, this should have been a not u have to make that change. So, this that term is I k a  

u and then we have derived this expression I k cubed mu 1 u. So, of course, you cancels out 

from all the terms. And what are we left with. We are left with b is equal to – I k cubed mu 1. 

So, that is the solution for this case. 
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 So, what do we have finally,  we have a solution which looks like this.  So, we have an 

additional t term, which we can club with this t term. So, let us try to collect all the terms 

together. We will be left with an expression which looks like this. Now, what we have over 

here? Remember that in the original wave equation, the solution look like this. And what do 

we have now? We have an altered expression here. 

Most importantly, we have an alteration in the time part. We have only an alteration here that 

means, earlier this used to be a, while it is now something else. So, let us call it as say, say a 

dash. So, it is a modified wave speed that we have. We do not have our earlier wave speed 

anymore. So, the modified wave speed is a + mu 1 k square. Now, what happens if you have 

a modification here? 

One thing that we can first of all figure out is that presence of the 3rd order derivative. What 

does it do? It changes the speed of propagation of the wave. This is the most important thing 



that it does. It has changed the way propagation speed from a to a dash because, we can say 

that mu 1 for all practical purposes must be positive or other non-zero more importantly non-

zero. 

Only then do you have 3rd order derivative present on the right hand side of the equation, 

Right. So, you have a non-zero mu 1 over here means that gets multiplied with the square of 

the wave number that means, this is a change which the presence of the town brings to what, 

to the wave speed. So, that means the wave would propagate at a different speed now. And 

that speed will vary for different wave numbers, the different wave number components of 

the wave. 

So, we can say that  the wave has a certain distribution,  a spatial  distribution.  Now; that 

spatial distribution embeds a lot of wave numbers for complicated waveforms say a wave 

looking like this. If this is the form you are defining at t = 0. Then this is not a very simple  

wave, which you can say generate with purely 1 sin term or a single cosine. So, it could 

probably come up with a combination of number of sin and cosine terms. 

If that is the case, you would see that a lot of wave numbers get embedded to give rise to this 

waveform. Now, as you propagate this waveform at the theoretical wave speed or analytical 

wave speed a does it really move as a packet? The answer is no, because every wave number 

would start moving at different speeds. So, that is the distortion that the presence of the 3rd 

order derivative is bringing in. 

So, now, just going back to the concept of modified partial differential equation, if you have 

the leading error  term showing up as a  3rd order derivative.  What  would that  do to  the 

solution? It  will  create  different wave speeds and that is what creates  dispersion.  So, the 

concept of dispersion comes from here. Again, remember that if mu 1 is positive, then we 

have speeding up of a certain wave number component. 

If new mu 1 is negative, then we have slowing down of a certain wave number component 

with respect to the exact wave because then if mu 1 is negative, we are looking at a dash 

which is less than a. So, this is the case for mu 1 less than 0. Right? And remember that mu 1  

is less than 0 is not to be confused with an anti diffusion case, because anti diffusion was 

occurring with even derivative. Here we have an odd derivative. 



If mu  1 is greater than 0, what does it do? a dash becomes greater than a. So, you have a 

slowing down here; you have a speeding up. So, at this point, you may be recalling that when 

we had earlier talked about phase errors. We talked about leading phase error and lagging 

phase error  for different  ranges  of values  of  the CFL number  for  the first  order upwind 

scheme.

So, we once more visit that concept here, but now in terms of solution of the exact partial 

differential equation. So, in the previous instance, when we were talking about the dispersion 

or dissipation. We were talking about the approximate solution. Here, we are talking about 

the exact solution. We will show once more another example.
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So, here, we go back to an even order derivative. Let us, try with a 4th order derivative now. 

Just to check that what does the effect of a higher order even derivative have on the solution. 

So, in this case, if you do a simple calculation yourself, you can show that the b term will  

come out to be k to the power of 4 times mu 2. And if that is the case, you will have a 

solution looking like this. This should be in the subscript.

So, this essentially becomes like this. And of course, for the sake of stability mu 2 has to be 

less than 0. You can see that this has a positive sign. It does not have an inherent negative 

sign like you saw in the second order derivative case. So, what will happen is you have to 

explicitly state that mu 2 has to be negative.  So that you can effectively have a negative 

exponent here and it actually behaves like a decaying term.



Otherwise, there will be a blowing up of the solution. That is from the stability perspective. 

What  about  the damping part?  This would damp very severely.  So very strong damping 

because you have a k to the power of 4 term here. So, in the case where you had a second 

order derivative on the right hand side. If you saw that in the exponent there was a k square 

term, Right. 

Now, you have a k to the power of 4 term, which means it will damp very strongly compared 

to  a  second  order  derivative  term,  but  it  will  damp.  So,  now  we  see  that  even  order 

derivatives  are  all  damping  the  solution;  odd  order  derivative  at  least  for  the  3rd  order 

derivative. We saw that it is dispersing the wave. So, these are very important properties, 

which we now saw through some model equations. 

And we will  remember  these trends  when we are looking at  modified  partial  differential 

equations.
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Now, before we complete our discussion on linear wave equation.  We would do a quick 

review of, some of the schemes which are existing beyond the first order upwind scheme. We 

have mainly dealt with the first order upwind scheme. But, as we can understand that first 

order  upwind scheme has first order accuracy both in space and time. So, there are other 

schemes, we first look at a few explicit ones. 



So, in the explicit category, we have a scheme called as the Lax-Friedrichs scheme. Now; that 

is a scheme which essentially stabilizes the unstable FTCS scheme by replacing the u i term 

on the right hand side by an average. So, you can imagine that if you were looking at the 

FTCS scheme, instead of this term, you would actually have a u i n term. So, instead of that it  

is replaced by an average and that happens to stabilize the solution, but in the process, it 

reduces the order of accuracy. 

It no longer has second order accuracy, like what FTCS scheme would have though FTCS 

scheme essentially is not a usable scheme at all. While this is a usable scheme, because it 

stabilizes the solution. So, order of accuracy is first order both in time and space that can be 

shown through a consistency analysis.  We have discussed about the consistency property 

already. And stability criteria is that the CFL number should be less than equal to 1. 
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If we are looking at more higher order accuracy in the explicit  category and linear wave 

equation, we can look at other schemes an interesting scheme to look at is, what is called as a  

Leapfrog scheme. It has its name by virtue of the typical nature of the stencil, where there is a 

kind of jumping around in the form the frogs do as they move. So, if you look at a point here, 

it is at a time level n - 1 and at a space location i. 

From there, if you look at a solution which you are developing at the higher grid point and n 

+ 1 at level, then what are the points which are contributing. A stencil looking like this is 

contributing. So, it is almost like a frog like stencil with jumps to that point. It leads to that  



point, to give you a solution. So, there are some interesting aspects to it. One is that you are 

using three time steps. 

If you have noted, there is n - 1, there is n, n + 1. So, in the previously discussed schemes, we 

have always talked about going from nth level to the n + 1th level. So, there were only 2 time 

steps involved in the solution. While here we are talking about 3 time steps. The scheme has 

a second order accuracy  which we of course, can show through the Taylor series expansions. 

Another very interesting property is that it is neutrally stable. 

That means the amplitude of G is equal to 1 which means, it will never artificially damp the 

solution. So, this is neutral stability when mod G is equal to 1. And it has a stability condition 

that several number should be less than equal to 1 because it deals with 3 different time steps. 

You would need a 2 steps of initial conditions or initial values to start the solution, because if 

you are at the first time step, and you want to go to the second time step. 

You would need a zeroth time step value to be fed into the algorithm in order to generate the 

second time step value, which is not available with you. So, first what you do is? You use a  

scheme which can work based on 2 time steps to generate a solution at the second time step  

just by using the first time step value. Once you are done with that you have the first and the 

second time step values available with you. 

And then you can generate the 3 time step using the Leapfrog scheme. And then the solution 

propagates  that way.  If you are not carefully programming,  then this  could involve large 

amount  of  computer  storage,  because  you  are involving more  number  of  time step  data. 

Another very popular explicit scheme which has overall second order accuracy both in space 

and time is the Lax-Wendroff scheme which shows up like this. Now, we would like to very 

briefly discuss how the scheme is derived? 
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So,  we look at  a  Taylor  series  approximation  at  x  and t  +  delta  t.  This  should  be  time 

derivative, second order time derivative or you can replace it by an index now, u i n + 1. This 

is u i n and then the derivatives. Of course, you will have order delta t cube terms here. Now, 

we remember that the model equation is this. There is a linear wave equation. So, that this  

expression for del u del t replaces the term as - a del u del x. 

And additionally, we know that the second order form of the wave equation looks like this. 

So, the second order time derivative is now replaced by this form that means, the temporal 

derivatives will now be replaced by these 2 forms in terms of spatial derivatives. If you do 

that what are you left with?
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You are left with this and of course,  3rd order truncation error, which we do not mention 

anymore. So, we use this form to be now discretize for the first and the second order spatial  

derivatives in the form of central differencing to give rise to the Lax-Wendroff scheme. So, 

we finally have. So, this is essentially the scheme and that is what you see over here. So, this  

of course, has second order accuracy in time and space and has a stability criterion of CFL 

number less than or equal to 1. 
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We can also think about implicit schemes where we do not have any issues with stability. So, 

one possibility is the Euler's backward time central space method. So, as you can understand 

that you have at more than one grid points, spatial grid points you are using n  + 1 at time 

level in your discretization. So, that would generate an implicit formulation. 



So,  what  you  have  essentially  is  a  tridiagonal  system  of  equations  formed  through  that 

formulation and this formulation would give you first order accuracy in time, second order 

accuracy in space and it is of course, unconditionally stable. So, this is Euler's backward time 

central  space method. Since,  you have a tridiagonal system, of course,  you can go ahead 

using the TDMA. 
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The last method that we discuss before closing the lecture is the Crank-Nicholson method 

being applied here. Crank-Nicholson, of course, we have learned earlier when we discussed 

about parabolic partial differential equations. And we already saw that that gives an implicit 

formulation  and if  you recall,  there  we had used the nth and the n + 1th time level  for 

discretizing the spatial derivative in an averaged form. 

So, the same formulation comes over here. So, you have contributions from both the n + 1th 

as  well  as  nth   time  levels  in  discretizing  the  time  derivative  and  thereby,  you  get  the 

tridiagonal form again in this case. You have more terms on the right hand side contributing 

from the nth level which are the known terms. It has second order accuracy in both space and 

time which is superior than the Euler backward time central spacing that we discussed earlier 

and again it is unconditionally stable. 

So, these are a few methods, which you can think of for discretizing linear wave equation 

both from the explicit  side as well  as implicit  side and they would have different formal 

orders of accuracy. But it would be more important to see that in terms of dissipation and 



dispersion behavior how these schemes perform. So, these could be explored further by the 

students as homework exercises, taking up each one of these schemes. 

And trying  to  explore  the  dissipation  and dispersion  behavior,  the  form of  the  modified 

partial  differential  equation.  And  that  would  give  more  insight  into  how these  schemes 

function as we use them for solving linear wave equation. Thank you 


