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In this lecture, we will begin our discussion on linear wave equation. In earlier lectures where 

we  had  discussed  about  different  governing  equations,  we  had  visited  the  linear  wave 

equation,  we are re-discussing it  here and this  time we are going to talk more about the 

different kinds of numerical schemes which could be used to solve linear wave equation. But 

before we go into numerical schemes, this could be a good time to recapitulate some of the 

issues related to the physics of linear wave propagation. 

So, we can see that here the linear wave equation has been written in 2 forms. So, we more  

often would be discussing about this form which is often called as the first order form that 

means, the highest order of the derivatives that figure in this form of the linear wave equation 

is first order. So, as we can see, there are 2 derivatives of u. So, u is essentially a function of 

space and time.

 

So, there is one space dimension x and a time dimension. And most importantly here the 

physics that we are modeling is a kind of an offer wave form that means, the wave would 

move physically from one location to the other as time elapses. And this physics is quite 



different from the ones that we were trying to model in the elliptic and parabolic kind of 

partial differential equations where we were talking about diffusive mechanisms.

 So, if you remember in elliptic partial differential equations, we talked about steady state or 

equilibrium  solutions  of  problems,  where  there  is  diffusion  phenomena,  and  again  in 

parabolic partial differential equations, we talked about transients diffusion that means, we 

were  tracking  the  time  history  of  the  diffusion  phenomenon.  Whereas,  here  when  we 

discussed about linear wave equation, we of course, we recall that this type of equation falls 

in the category of hyperbolic partial differential equations. 

We recall that they involve real characteristics. So, this was discussed earlier when we were 

talking about classification of partial differential equations. And therefore, there are specific 

directions along which information would propagate in the domain and this is a very dramatic 

feature of hyperbolic partial differential equations. And coming back to the equation that will 

most often discuss in this context. 

It is the first order form of the linear wave equation. And whenever we talk about wave of 

course, we are most often talking about propagation of a wave through a certain medium until 

unless we are talking about standing waves. So, the wave moves through the domain with a 

certain velocity. Now, this equation could also be expressed in a second order form, where 

the partial derivatives in space and time are second order.

And it can be shown that the first order form would allow propagation of a family of waves 

which move along the positive  x direction  or  negative  x direction.  Separately,  while  the 

second order form of the equation can allow the propagation of waves, both along positive x 

direction as well as negative x direction simultaneously.  So, this is a very, very important 

feature of the problem and we can show that if the solution of the first order form of the 

equation is given by a functional form of this kind.

So, this is what is possible in a first order form that means, to allow a solution of either this 

kind u is equal to f of x – a t when a is greater than 0 that means, the wave is propagating 

along the positive x direction or you can accommodate a solution of this kind g of x + a t 

when the wave propagates along the negative x direction. So, it can allow any one solution at 

a time while the second order form would allow a solution of this kind.



f of x – a t + g of x + a t, simultaneously. So, there will be a waveform moving along the  

positive x direction and other waveform moving along the negative x direction and the speed 

of propagation of the waveform along both directions would be in terms of magnitude. It will 

be a. So, it will be a positive a along the; for the form which moves along the positive x 

direction and a negative a, for the form which moves along the negative x direction. So, what 

is this wave all about? 
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So, we may try to physically look at the problem like this that when we talk about linear 

waves or propagation of linear waves, a good example of linear waves could be pressure 

waves which are weak. So, weak pressure waves the kind which we are very familiar with 

sound waves or acoustic waves. So, these kinds of waves produce mild compression and 

expansion in the medium through which they propagate. 

As long as these changes are reversible, that means, there is a mild compression or a mind 

expansion and all this is happening in a reversible manner thermodynamically. Then you can 

show that such wave propagation can be governed by the linear wave equation. So, if we look 

back at the linear wave equation in its first order form. This equation models the physics of 

this kind that if you look at how the wave propagates through the domain.

You try to look at it in the x t plane. And let us take the other direction to represent what that  

mild wave looks like in terms of say u. So, at t = 0, it may be looking like a mild ripple of this 

kind which means there is a portion where u is slightly positive; there is a portion where it is 



slightly negative. So, a positive portion would mean that it is a small change in u, which is 

positive in nature and the other one would be a small change in the negative direction. 

So, we would like to see how this small change which we see at the initial instance. That is a t 

= 0 propagates through the domain. So, in order to see that we try to look at it at a later time. 

And then  we will  see  that  the  very  same  wave  packet  in  terms  of  appearance  has  now 

translated to a new location. So, the shape of the wave packet remains unchanged. It has only 

translated and therefore, now occupies a new location. 

So, if you have allowed it a certain time, let us call this time interval. So, from t = 0 to let us 

say t 1 you have allowed it so much time to propagate then it would have traversed a certain 

distance, we call that distance as say x 1. So, you allowed the wave to move for time t 1 and  

you are now finding it in a new location x 1 from the origin. Then you will find that it follows 

this equation. 

That x 1 is equal to a times t 1 and you can very well understand that the wave is essentially 

propagating with a speed a. Therefore, is governed by dx dt is equal to a. Now, if this wave 

was not a weak wave of the kind like sound waves or acoustic waves and a more stronger 

wave, then this might become a nonlinear wave. And a dominant feature of a nonlinear wave 

is that as it propagates through the medium it also changes in shape. 

We will discuss more of this in a later lecture, but for now, we just tried to understand it this  

way that for a linear way, the different portions of the waveform would propagate at the same 

speed a. And therefore, as the waveform or a wave packet moves through the domain, there 

will be no change in its shape, because different portions of the wave packet are propagating 

at the same speed. If that was not the case, then the waveform would have changed in shape. 

So, that is the basic idea behind linear wave propagation. Another thing that we have to keep 

in mind is that when we try to show a ripple of this kind, which we try to explain through 

small ripple of delta u in the positive and negative sense, you could physically try to look at it 

this  way.  That  when  sound  propagates  through  mediums,  it  does  so,  in  the  form  of 

longitudinal  ways.  So,  there  may  be  a  region  of  compression  followed  by  regions  of 

expansion. 



So, there are packets of compression again packets of expansion juxtaposed or adjacent to 

each other and the compression packets would locally increase the pressure or density. And 

the  expansion  packets  will  reduce  pressure  and  density.  Also,  temperature  or  velocities 

locally will change by very small amounts. These are all delta amounts. And as long as they 

remain weak; they are called as small perturbations. 

And all such small  perturbations give rise to linear wave formation and propagation.  The 

moment the perturbations become large and strong, they would lead to formation of nonlinear 

waves which are strong waves. And the nonlinear waves as they propagate through a domain 

would distort as they propagate. So, it is a very important thing to understand this physics 

before we try modeling the numerical aspect of linear waves. 

Remember that one way of modifying this equation by replacing the term a could be that you 

bring  in  the  dependent  variable  in  place  of  a.  The a  here happens to  be a  constant;  the 

constant which is the wave speed. So, each portion of the wave is propagating with the same 

speed a. The moment you change the governing equation to one which looks like this, which 

incidentally is called as Burgers equation. 

This term no longer is a constant, it is now the dependent variable itself and that brings in non 

linearity.  So,  the  dependent  variable  being  multiplied  by  its  spatial  derivative  brings  in 

nonlinear behavior in the wave. And therefore, the waveform here once it propagates through 

the domain would distort  as it  does so.  So,  with this  introduction,  let  us start  looking at 

possible ways of numerical discretization of linear wave equation in its first order form. 
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We would look at a few possible ways of discretization of the wave equation for doing that 

will use clues of some numerical schemes that we have looked at earlier say in the context of 

parabolic  partial  differential  equation.  Why  we  would  like  to  look  at  parabolic  partial 

differential equation is because that had a transition term that means a time dependent term as 

well as a space dependent term. 

Now, incidentally wave equation also has a time dependent term and a space dependent term. 

So, and intuition could be that  why do not we try some of the schemes that worked for 

parabolic partial differential equation. In the case of linear wave equation, let us see whether 

they work as well.  But one thing that we have to be careful  about is that  from our past 

experience, we know that explicit schemes could become unstable. 

So,  they  could  either  be  unconditionally  unstable  or  at  best  conditionally  stable,  but 

unconditional  stability  from explicit  schemes  is  rather  rare,  if  not  impossible.  Whereas, 

implicit schemes are in general stable schemes. So, keeping this in mind, we would first like 

to look at some possible ways of discretizing the linear wave equation and then try to check 

for the stability through the Von Neumann stability analysis. 

Remember that  here we have both space and time and therefore,  Von Neumann stability 

analysis like the way we did for parabolic partial differential equation also applies over here. 

And again we are handling a linear partial differential equation. So, we are satisfying some of 

the  basic  requirements  which  are  mandatory  for  Von  Neumann  stability  analysis.  The 

linearity being the major issue. So, let us go ahead and try out some possibilities. 



So, here we have proposed a few possible schemes by which we can discretize the linear 

wave equation. So, one of them is already familiar to us that is the forward time central space. 

This  is  a  scheme  which  gave  us  conditional  stability  in  the  case  of  parabolic  partial 

differential equation. You remember that for one dimensional parabolic partial differential 

equation. 

We were able to show that the diffusion number is less than equal to half is the stability 

condition of the criteria for keeping the calculations stable. So, we would like to see how 

FTCS does in this  case.  Additionally,  we are trying to explore the impact  of biasing the 

spatial  derivative  calculation  through  one  sided  finite  difference.  So,  we  are  proposing 

forward time as usual, but forward space and then again forward time. 

But here backward space as the other possible ways of discretizing the linear wave equation. 

So, we will see that how these schemes do in terms of stability. So, let us begin the exercise 

by looking at the forward time central space scheme.
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We again write down the governing partial differential equations and then try to discretize it 

using the forward time central space scheme. And then try out the Von Neumann stability 

analysis. So, what we have done is, we have first of all transpose this equation transpose this  

term to the right hand side and thereby there is a negative sign here, the coefficient a is here 

in the numerator, which is the coefficient of the derivative and this comes essentially from the 

denominator of the finite difference for del u del x using central differencing. 



Now, if you look at the formal order of accuracy of this scheme, this would be first order  

accurate  in time and second order accurate  in space. Now, in order to carry out the Von 

Neumann stability analysis, we follow the usual procedure. But before we go ahead doing 

that let us try to collect all these terms together to define a particular number which is very,  

very important in the wave equation world. 

So, we will take the delta t to the other side; it gives us - a delta t by 2 times delta x. And 

therefore, the left hand side would now have to be written this way. Now, incidentally the 

collection of these terms a times delta t by delta x is represented as C which is called as the 

Courant Number. Keeping that in mind, this can be written as - C by 2 u i + 1 n – u i – 1 n. 
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So,  now,  if  you  go  ahead  doing  the  Von  Neumann  stability  analysis,  what  would  you 

substitute for each one of the terms and then what we usually do is we try to extract common 

factors. 
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So, it can be written like. So, we recall that this is the amplification factor G and before we do 

that this and this; the common terms; they cancel out. So, we are left with G – 1 on the left  

hand side and you will have – c by 2 into this would give you 2 I sin theta by using the Euler  

formula. So, these 2 cancel out, so, we have – c I sin theta. So, that gives us G is equal to 1 - c 

I sin theta.

Now, this happens to be complex expression because of the Capital I. So, in order to obtain 

the mod G, we would invoke the complex conjugate of G which is written as G star. So, that 

will become 1 + c I sin theta. So, if you multiply these 2 terms you get G, G star is mod G  

square which is nothing but 1 + c square sin square theta. So, anything other than sin theta = 

0 would produce a mod G square greater than 1 which means this is unconditionally unstable. 

And  this  is  something  which  is  different  from what  we  found  for  the  parabolic  partial 

differential  equation  because  FTCS scheme  had  worked  for  parabolic  partial  differential 

equation conditionally. So, there was a conditional stability clause whereas, here we find that 

it is unconditionally unstable that means, forward time central space scheme is not suitable at 

all for handling linear wave propagation.

So, we would stop here with this lecture, we will look at the possibility of using the other 

schemes that we talked about that means, whether the forward time forward space or forward 

time backward space kind of schemes work for linear wave equation. We will try to explore 

this in the next lecture. Thank you.


