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In this lecture, we are going to look at the governing equations of fluid flow. We will start 

from very simple model equations and try to build them to more complex levels. So, this 

lecture broadly looks at some introductory comments on partial differential equations. Then 

we go over to some simple model equations where we look at Laplace equation to begin with. 

Then we look at unsteady heat conduction equation followed by linear wave equation. 

 

These are individual partial differential equations, which I mentioned. After this, we are 

going to talk about more complex equations, which actually form a system like Euler 

equation and incompressible Navier Stokes equation. We have to keep in mind that this is not 

an all encompassing list. There are many more equations in the domain of fluid dynamics. At 

this point, we do not need to bother much about that. This would give you some introductory 

exposure to some of the important equations. 
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When we talk about governing equations for fluid flow problems, we very often see that they 

comprise of partial differential equations. These partial differential equations could be single 

equations for simple problems while they could be a system of partial differential equations 

for more complex problems, Henceforth, we may very often be referring to partial differential 

equations as PDEs, which is a very commonly followed abbreviation. 

 

To have a brief description of what exactly we mean by partial differentials, we can have 

various dependent variables in a flow field like velocity components. So, if you are looking at 

it as a Cartesian system where you have the x, y, z directions you could have velocity 

components defined along these respective 3 directions. So, then you talk about the u, v, w 

components of velocity.  

 

You could have pressure, you could have density, temperature and other parameters which 

could be of interest when you are solving a fluid flow problem and most often we find that 

these variables are dependent on a number of independent variables. For example, when I talk 

about the x component of velocity u, I may be finding that u is actually a function of a 

number of independent variables, which are x, y, t and could be more.  

 

When do I have u as a function of x and y, here it means that we are interested in solving a 

flow problem which involves two spatial directions x and y, which are orthogonal to each 

other. Additionally, there seems to be a dependence of the u on time. So, that is why the u 

component of velocity now becomes a function of 3 independent variables. So, remember 



that x, y, t are independent variables while u, v, w, p, rho, T and others which you can think 

of which carry information about the flow field are dependent variables.  

 

We are always interested in a given CFD exercise to calculate the dependent variables as a 

function of the independent variables. Now, let us look at what are the different derivatives 

that we can calculate once we know that u is a function of x, y and t. So, now you know that 

there could be a derivative of u with respect to the time, derivative of u with respect to the x 

direction, y direction and remember that these 3 are all first order derivatives because you are 

applying the derivative operator only once.  
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However, they are not ordinary derivatives. They are partial derivatives. Therefore, we 

indicate them with the del sign and not the d sign. So, you can take a derivative of u with 

respect to t, you can do it with respect to x, with respect to y and possibly more independent 

variables if they exist. Also, you can apply the different derivative operators once or multiple 

times. When you operate it twice one in succession of the other, then you get a second 

derivative.  

 

So, how did you get the second derivative? You first took a derivative of u with respect to x 

and you got 
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up getting 
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. Likewise, this may be happening for other dependent variables also. So, 

when you are solving a flow problem where all these are your dependent variables, you can 

imagine that there could be numerous derivatives, both spatial as well as time derivatives, 

which can exist. 

 

It is very important for us to understand that these derivatives will be important for us 

because in fluid dynamics world we end up handling partial differential equations, which are 

comprised of these derivatives. Having said that, we can now understand that once those 

derivatives make their way into the equations, the equations may be classified in different 

possible ways.  

 



One very important way by which we classify partial differential equations is written here, 

where we say that a partial differential equation could be linear or nonlinear, we really need 

to understand what is meant by that. 
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Here you find a number of derivatives written. This is something that you have already 

looked at. The first derivative of u with respect to x, 
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, it is a partial derivative, a first order 

partial derivative. So, this derivative has a linear behavior because of the following reasons. 

One, that it is not raised to a power other than 1. When can this happen? It can happen when 

you are actually multiplying this derivative with itself 
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linearity. 

 

This is one possible way by which non linearity can creep into a fluid dynamic equation. 

What are the other reasons? The other reason or at least one of the other reasons could be a 

term which looks like this where you have the dependent variable being multiplied with its 

own derivative.  
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This is another major source of non linearity. You will very often come across with this kind 

of non linearity in fluid dynamics equations.  

 



Notice that if this same term was written in a manner like this, where you have a constant 

coefficient ‘a’ associated with the first derivative, that would not lead to non-linearity. 
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So, this is a linear term in a partial differential equation because this constant has no 

connection with the dependent variable. However, there is no guarantee that the coefficient 

would always be a constant. It could depend on independent variables. 

 

For example, in a problem where we stated that u is a function of x, y and t, i.e., u=u(x,y,t), 

we could say that even this coefficient could be a function of x, y and t, i.e., a=a(x,y,t). In that 

case, you will find that this constant will become dependent on the spatial location and time, 

but nevertheless that would not be sufficient reason for considering that term to be a 

nonlinear term, only thing is that then that coefficient becomes a variable. 

 

These are very important concepts, which we have to understand before we actually try to 

classify a partial differential equation as a linear or a nonlinear one and then it makes a lot of 

difference. That is why we are spending some time on this aspect to understand it very 

deeply. Getting back to our slide where we were looking at the points based on which we will 

classify partial differential equations. 

 

We now understand that how the derivative terms would look like in a linear or a non linear 

partial differential equation. Apart from this classification, there is more to the classification. 

We go to the next point where we talk about the order of the PDE. Here, we look at the 

derivatives which constitute a partial differential equation and we see what is the highest 

order of derivative which exists in that equation?  

 

Is it first order or is it second order or it is even higher? Now, what do we mean by order 

when we talk about a partial differential equation. What we understand is that if we have a 

term which looks like 
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, then the order of the derivative is 1. However, when you have a 

second derivative, 
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, then the order of the term is 2. As we said that there could be even 

higher orders than 2, but not very often seen in fluid dynamics. 

 



Going to the next point, we can have a single partial differential equation or system of partial 

differential equations when we look at a flow problem. So, we need to understand that how 

the system or a single partial differential equation emerges for a given flow problem, by and 

large depends on the complexity of the flow problem. For relatively simple flow problems or 

associated transport phenomena, which could also include heat transfer for example, we 

could have a single partial differential equation, which can take care of modeling the 

phenomena. However, for including more complex phenomena, most often we need system 

of partial differential equations and often these systems take care of conservation of certain 

properties. It can involve conservation of mass, conservation of momentum, conservation of 

energy and many more things. It could be conservation of certain species. It depends on how 

complex a system you are trying to model. So, what we understood was that system of partial 

differential equations often take care of conservation of certain properties and this is very 

important. 
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We are now looking at some simple model equations. This we must appreciate is just relative 

simplicity. We do not really mean to say that Laplace equation, which is a comparatively 

simple model equation is actually very simple, but yes it is simple in comparison with a much 

more complex system of equations like say Navier Stokes equations. Now, what is the 

statement that we have over here when we look at Laplace equation?  

 

So, we have a so called Laplacian operator which is indicated by the del square. So, it is a 

partial differential operator which is operating on a scalar which we have indicated as phi.  

02    



So, let us try to write a little bit more on what this operator actually means. 
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What we do over here is write the Laplacian equation or the operator for a 2-dimensional 

problem.  
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So, what would it look like when we have a 3-dimensional problem? You can just imagine 

that one more dimension will get added to it.  
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So, what do we have over here? We have second order partial derivatives, which form this 

operator and every time we include one term means we are just catering to another direction 

in space, but it is a purely spatial operator. 

 

It has nothing of time involved in it. So, when we apply the Laplacian operator to a scalar 

which we have indicated as phi, then how will the terms look like? So this would give you 

Laplacian phi, 2 , in 3 dimensions for of course a Cartesian system of coordinates.  
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We have available expressions for the Laplacian operator in other orthogonal systems as well. 

You may be interested to solve a problem, which is not very convenient to handle say in a 

Cartesian system.  

 

In such a situation, you may not like to use this form of the Laplacian operator at all. You 

may like to use the Laplacian operator for a Cartesian system only for problems which fit 

well into a Cartesian coordinate system, while there may be problems which can be better 



tackled using spherical coordinate system or cylindrical polar coordinate systems. In such 

cases, we have to invoke the corresponding expression for the Laplacian operator. 

 

This is important for us to remember because the governing partial differential equations look 

different based on what kind of coordinate systems we are using. So, when we apply the 

general form, we just write Laplacian phi = 0, 02   ,  then we are not explicitly stating 

what kind of coordinate system we are using. So, only when we write it down in detail, it 

becomes very explicit that whether we are using a Cartesian system or a spherical system or 

say a cylindrical polar coordinate system.  

 

In fact, in CFD to tackle realistic problems, we may not always be able to fit in these kinds of 

so called orthogonal coordinate systems all the time. You may very often be handling non-

orthogonal coordinates. In such cases, you may be at best able to approximate the operator, 

but not write it down exactly. Coming back to what we had here on the slide, we see that 

Laplace equation is used to study potential flow.  

 

So, we are talking about a kind of flow which is devoid of viscosity, is incompressible and 

very importantly irrotational. So, these are the very important features of potential flow. We 

often say potential flow is ideal flow because we have idealized it through these significant 

assumptions or simplifications. However, on doing this, we get a remarkable simplification of 

the governing equations and that is why the entire flow problem can now be encapsulated 

into a single governing equation. 

 

If you look at the general form of the equations from where we start simplifying, they are by 

no means a single partial differential equation, they are actually a system of partial 

differential equations, but when we apply these assumptions, then the system finally emerges 

as a single partial differential equation. So, whenever we do CFD, we have to keep track of 

assumptions that we are making down the line because a lot of the simulation results 

basically depend on the capability of the model equation. 

 

Again, we have to be extremely careful in setting the proper initial and boundary conditions 

appropriate with the governing equation so that we generate a sensible solution out of it. 

Also, we need to interpret the results with care. We cannot expect a model to do beyond its 



own capability. For example, if I am using Laplace equation to solve flow past an airfoil 

section, which is looking like the wing section that we talked about earlier in the pictures, 

which looks more like this.  

 

So there could be a flow coming and meeting this airfoil section and then if you are solving 

such a flow using Laplace equation, you need to understand that you will not be able to 

simulate any kind of viscous effect on the airfoil surface, which means the airfoil will not feel 

any drag. Drag force is felt by a body when immersed in a viscous flow which resists its 

movement through that flow. 

 

So, when you are running very quickly, you can feel the wind blowing against your face, you 

can feel a stronger wind, when you are driving a scooter or a motorbike. You can imagine 

what kind of winds are faced by the windscreens of aircrafts. So, when the wind impinges on 

these surfaces, very often in the real situation, it ends up dragging that surface behind, 

resisting its motion.  

 

Now, if you are solving a problem across the airfoil where you have used Laplacian phi = 0, 

02   , as your governing equation, it fails to predict drag. So, what it predicts is 0 drag, 

which is not the reality. However, we have to understand that that comes from the limitation 

of the model equation because that is rooted in the assumptions. This is a very important 

consideration when we are doing computational fluid dynamics.  

 

We have to define for ourselves what exactly we are looking for. So, you may remember that 

there were 5 important steps in a CFD exercise. The first step was problem definition. In the 

problem definition, you have to define yourself that when you solve flow past this airfoil 

section, whether you are interested to calculate the drag or not. If you are interested in 

calculating drag, then certainly Laplace equation will not help.  

 

You have to perhaps look at more complex equations, at least the boundary layer equation. In 

certain cases, you may actually have to look at more complex equations, which could be the 

Navier Stokes equations. However, Laplace equation can do a remarkable job in predicting 

what pressure is felt by this surface. 
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We will try to draw that airfoil section briefly and try to understand what kind of forces may 

actually be coming on to that surface when it faces the flow. So, as the flow moves past the 

surface, pressure acts on the surface all over. The pressure tends to point towards the surface. 

Additionally, there is shear stress which is acting on the surface and it remains tangential to 

the surface at every point. 

 

So, you have pressure on one hand and shear stress on another. A combination of pressure 

and shear stress would be able to give you a realistic estimate of lift, drag and pitching 

moment which act on this airfoil section. So, when you are interested in lift alone, which is 

the force which tends to keep this airfoil section afloat when it is flying in air, that can be 

very well predicted with Laplace equation. 

 

So, this is one of the main motivations of using Laplace equation to solve potential flow. 

However, as we already discussed that it would not be able to predict drag because of the 

accompanying limitations.  
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We can use Laplace equation even to solve the steady state heat conduction problem. So, 

instead of phi acting as a flow variable which we call as the velocity potential when solving 

potential flow past the airfoil section, when solving the steady state heat conduction, phi 

represents temperature distribution in a certain region. 

 

Then the equation actually looks like this Laplacian T equal to zero, 02  T , where T 

stands for temperature. So, if we are interested to find the steady state temperature 

distribution in a certain region, then Laplace equation can be used to do that. So, we find at 

least two very important applications of Laplace equation in fluid dynamic and thermal or 

heat conduction problems.  

 

Just to make the story more complete, what does the velocity potential mean over here? You 

find that different velocity components which we talked about earlier when we were talking 

about partial derivatives are mentioned here; i.e., u, v, and they are connected with phi. So, 

apparently if you take partial derivative of the velocity potential which we represent as phi 

along different Cartesian directions, we retrieve the velocity in those directions by doing that. 

Therefore, if you are able to solve for phi from Laplace equation, you should be able to solve 

for the velocity field.  

 

In steady state heat conduction equation when you use temperature as the dependent variable, 

then the approach is very similar, but then you do not have to do this additional step of 

connecting the velocity potential with the velocity components by taking derivatives of phi, 

you get the solution straightaway. Now, looking at the behavior of Laplace equation, there 



are a few very important things we need to notice. The first thing is that Laplace equation is a 

linear partial differential equation. Why is it?  
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So if we go back and try to do a little work to understand what we meant by linear, you will 

recall that if we are not raising the power or the index of a derivative to anything other than 1, 

then the term remains linear. Also, if we are not associating the dependent variable with its 

own derivative, then also there is no reason why non linearity will come. So, in terms like 

these, you will not have any reason for non-linearity. 

 

Second order spatial derivatives constitute the Laplacian operator. Each one of them produce 

linear terms and therefore the Laplacian operator is a linear operator. There is a very 

important characteristic associated with linear operators. If you have 2 independent solutions 

of the Laplace equation which you write as 1 and 2 , then 1 and 2 would independently 

satisfy Laplace equation. 

 

But most interestingly, you may be able to generate another new  , which is a linear 

combination of 1 and 2 , which also satisfies Laplace equation. So, you can have a new   

which is a linear combination of 1 and 2 , 2211  kknew  , where k1 and k2 are constants. 

Then this new  can also satisfy Laplace equation. You can try doing this yourself during spare 

time and see for yourself whether this works or not, but I can assure you that this works. 

 



This is a very important feature of linear partial differential operators or linear partial 

differential equations. So, solutions can be linearly combined to generate newer solutions. 

This is a very important feature. Additionally, Laplace equation has second order derivatives 

and therefore it qualifies as a second order partial differential equation. It equals to 0 on the 

right hand side and that is what makes it homogeneous and it is a single partial differential 

equation which solves the flow problem. 

 

Therefore, we do not need to solve more than one equation to generate the flow solution here, 

which makes us a bit lucky of course. If the right hand side of the equation in Laplace 

equation is nonzero, then we have it in its inhomogeneous form and then we call it as the 

Poisson equation. If we have terms on the right hand side, which can be indicated as ‘S’, then 

Laplacian phi equal to S, i.e., S 2 . Such non zero terms on the right hand side of the 

equation are called as source terms.  

 

Let us say we are trying to solve a steady state heat conduction problem in a domain which 

looks as follows.  
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So, we have a planar domain as above, which can be defined typically in the x, y coordinate 

system. Laplace equation would be solved to obtain the temperature distribution within this 

domain. The temperature distribution has to be specified along the boundary of the domain. 

So, until and unless you define the temperature all around the domain boundary, you cannot 

expect Laplace equation to solve for the steady state temperature distribution inside the 

domain. 



 

Having said that, one may pose a problem like this that is it only going to be the temperature 

distribution all over the domain boundary which will help us do realistic problems? We may 

like to define certain points within the domain which are acting like hotspots. So, you may 

have certain internal regions where temperatures are different from that specified at the 

domain boundary. 

 

These temperatures could be higher or even lower than what exists on the boundary. The 

main point is that if you do want to put such sources or sinks of temperature, then you need to 

end up using this form of the equation ST 2 . Solving Laplace equation 02  T will not 

answer this question. So, you essentially solve for Poisson equation and this is the equation 

with the source term on the right hand side.  

 

Poisson equation incidentally is very often used in solving the pressure field in 

incompressible flows. Incompressible flows usually occur at lower speeds, though that is not 

a very formal definition of it. 
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Let us do a very simple problem here. Let us try solving the Laplace equation in one 

dimension. Now, incidentally, if you reduce the Laplace equation to one dimension, then 

essentially the partial differential nature of the equation will be lost, because it will then 

become an ordinary differential equation. In general phi could have been a function of x, y 

and z,  zyx ,,  , but we are simplifying the problem and saying that phi can only be a 



function of x,  x  . Dependence of  on a single independent variable, x, reduces the 

PDE to an ODE.  

 

The number of independent variables involved in the problem reduces to one and you can 

take derivatives only with respect to x, which means the problem now boils down to 

involving ordinary derivatives. So, ordinary derivatives can give you ordinary differential 

equations and in the given perspective Laplace equation would now look like 0
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Now, this is a much simpler equation to integrate as you can understand. If you integrate it 

twice, you will get a solution looking like this ckx  .  However, we do not know what 

the value of k and c are. Of course, these can come by suitably imposing boundary 

conditions, which we specify at the domain boundaries. A few minutes back, we were already 

saying that in order to solve Laplace equation, we must always specify boundary conditions 

all over the domain.  

 

So, there it was a planar domain, but here it is going to be just a one dimensional domain 

because we have reduced the problem to only dependence along x. So, let us say you have a 

domain which is defined from x = 0 to x = L along the x direction and you have specified the 

boundary conditions of   as L  and R  taking L and the R as the left and right ends of the 

domain.  

 

Now if you have a solution looking like this ckx   acting on this domain, then you can 

very easily find out what the values of k and c are when you impose these boundary 

conditions in the above equation. As you can understand that at x = 0 you will have L   

and at x = L, R  . So, if you impose these conditions in the above equation you will be 

able to find out k and c and then finally the variation of phi along the length of the domain.  

 

So, if   is representing temperature, then this kind of a problem is connected to steady state 

heat conduction in one dimension and what we find over here is that this problem has a linear 

variation of temperature over the length of the domain. Again, we make a comment over here 



which we will discuss at length in a later lecture that Laplace equation incidentally is an 

elliptic partial differential equation. 

 

This is one more way by which we can classify a partial differential equation, however we 

have not discussed much about it. Only thing that we know is we have to impose suitable 

boundary conditions at the domain boundaries in order to come up with a solution in such a 

case. The solution shows a linear variation between the boundary values and it will never 

show an overshoot or undershoot compared to the boundary values.  

 

It will always remain bounded between the minimum and the maximum boundary values. In 

this case, R  and L . When we solve Laplace equation in multiple dimensions, even there we 

will get a smooth variation of  , but that will be along multiple directions, which will 

generate surfaces or volumes. We understand that boundary conditions have a profound 

influence on how the solution emerges. This is a characteristic behavior of partial differential 

equation.  

 

Interestingly in Laplace equation, there is no time dimension which means the solution does 

not take time to evolve to a steady state as though we have an instant answer, an instant 

distribution available to us. Now in the heat transfer problem, we say that we are interested 

only to look at the steady state temperature distribution and therefore it is obvious that we are 

not going through those times when the temperature is actually changing.   

 

We are only looking at the final snapshot, the equilibrium temperature distribution. If you 

look at the physics of the problem and go deep in to the material, probably there will be a lot 

of molecular collisions going on to take care of the heat transfer from one end of the plate to 

another till it reaches that steady state distribution. However, we are not interested to find any 

details regarding those transient states or the intermediate states when the solution is actually 

unsteady that means it is changing with time.  

 

We are only interested to find out about the equilibrium state. How does it work when it is a 

flow problem like we were talking about potential flow solution? Incidentally over there if 

you introduce any source of disturbance into a flow field, which could be an airfoil, which 

could be any other surface, which could also be a moving airfoil, then you have to first check 



whether the flow broadly satisfies the assumptions under which Laplace equation is valid. If 

found valid, then presence of a body or body movement would create pressure waves in the 

flow field, which travel enormously fast (in incompressible flows they travel at infinite 

speed) in all directions of the flow field and takes no time to adjust the flow properties. 

Therefore, you have a steady state solution, which does not need any time to emerge. So that 

is the trick which is available as far as the potential flow problem is concerned when we try 

modeling it using the Laplace equation. This is a very unique feature that we need to 

understand. 
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Another very important and interesting transport equation is called as the Unsteady heat 

conduction equation. One of the terms looks like the Laplace operator, which is seen on the 

right-hand side of the equation associated with a coefficient which we call as the thermal 

diffusivity. On the left hand side of the equation there is a time derivative. 

 

This is the first model equation where we see dependence of the temperature on time. We did 

not look at any model equation where time would be important for us yet. It was not there in 

the Laplace equation, but it is now available in the unsteady heat conduction equation. What 

we are going to talk about over here is that how the temperature distribution in a one 

dimensional domain will start developing over time till it reaches steady state. This we will 

address in our next lecture. 


