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Lecture - 13 

Taylor Table Approach for Constructing Finite Difference Schemes (Contd.) 
 

In this lecture, we continue our discussion on Taylor table approach. 

(Refer Slide Time: 00:32) 

 

Last time, we had done a problem where three grid points were involved in the 

stencil, namely i, i + 1 and i + 2. With that stencil, we did the Taylor table calculations 

and we found that the scheme turns out to be a second order accurate scheme. But we 

did not do a very thorough discussion on how it comes up with a second order 

accuracy. 
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We just discussed that on the right hand side of the expression that we derived from 

the Taylor table approach, the bracketed terms would be set to 0 so that we are able to 

send as many of those terms as possible to 0 and thereby enhance the accuracy of the 

scheme in a formal sense. So by doing that, we could set three of those bracketed 

terms or expressions to 0 and thereby obtain the expressions for these unknown 

coefficients a0, a1 and a2 which we set out to do. 

 



And the remaining bracketed terms the higher order terms would still remain as the 

truncation error terms. So if you look at the truncation error terms and then you try to 

substitute these values of the coefficients that you have now obtained, then you can 

find out in a proper manner whether it really turns out to be a second order accurate 

scheme or not. So let us try to review that activity. 
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So here what we see is, we have these three bracketed expressions set to 0, which 

helped us calculate the values of those unknown coefficients a0, a1 and a2. And then 

the leading order term in the truncation error was left here, the one that we just 

indicated. 

 

So if you now substitute the values of a1 and a2 what you have worked out in that 

expression in the bracketed expression, then you find out that this actually produces h2 

terms. So that is what we need to show before we can justify that it actually produces 

a second order accurate scheme. So having said that, now let us try to do one more 

example problem, where we would have a symmetric stencil. 

 

So you remember that he problem that we did had a kind of a biased stencil in the 

sense that it just had points disposed on one side of the reference grid point i that is to 

the right of the point i. That means, essentially the forward direction. So it gives you a 

kind of a one sided biased scheme. Whereas, now let us do an example, where we 

actually have a centered scheme. That means, the point i would lie at the center of the 

stencil. 
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Before we do that, let us once again review the finite difference expressions that we 

have worked on till now. So when we worked on the first and second derivatives 

using a 3 point stencil, we have seen that the reference grid point was i and we had 

taken two points i +1 and i - 1 on two sides of that point. And that helped us to come 

up with these two expressions for the first and second order derivatives through the 

Taylor series approach. 

 

 

 

 

 

 

And both of them turned out to be second order accurate approximations of the first 

and second derivative. So we once again note that in central schemes, we find 

symmetric stencils being used about the grid point i. And the second order accuracy 

came from a 3 point stencil. We will for now focus only on the first derivative, when 

we do it for still higher order accuracy. 

 

But we find that even for the second order derivative, the same 3 point stencil could 

be used. Now we found out the f   using central differencing of second order 

accuracy. This is often referred in the literature as CD2 scheme. That means central 

differencing with second order accuracy. So that is abbreviated as CD2. 
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We might like to go ahead with an ambition to get a scheme with still higher order 

accuracy, let us say fourth order accuracy. And let us try to guess that what kind of 

stencil may help us achieve that. So we are setting out with the target to find an 

expression for fourth order accurate central difference formula for first order 

derivative. 

 

What we mean to say is going by the previous nomenclature, we are interested to find 

out a finite difference scheme for '
4CDf  because we continue with the central 

differencing but this time the target is to go to fourth order accuracy. Now we have to 

do a slightly intelligent guess at this point in choosing the stencil. We go ahead by 

saying that earlier it was a 3 point stencil. Let us see what happens when we use a 5 

point stencil instead, which means, you have i here, i + 1 and i - 1 the stencil that gave 

you CD2 and then you are now guessing that you need to expand this stencil to 

another two points included which makes it i – 2 to i + 2 which means 5 point stencil 

and we are hoping that, that may just turn out to be adequate for a CD4 finite 

difference calculation. 

 

So if that really works, we should be able to come up with a discretization of this 

form.  
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So here what do we have? We have now laid it out in the form we used earlier, which 

is more suitable for the Taylor table approach. So we have the derivative term here, 

if   and then comes all the functional values. And you notice that in your CD2 

expression for example, you just had fi+1 and fi–1 in the formula. 

 

But remember that fi was missing. So going by the same trend, we have now chosen 

the functional values at i + 1, i – 1 like before and just added on i + 2 and i - 2, which 

means we continue to skip fi. This is usually the trend for first order derivatives on 

central stencils. It works in general. And then we are hopeful that this kind of a stencil 

will help us achieve a fourth order accuracy. 

 

Let us set out with this target and see how far we can achieve this. Note that we could 

have different kinds of nomenclature. Here we are using delta x for example, instead 

of h which we have been using for some time. You should be developing this habit of 

using alternative nomenclature because you might find these different nomenclatures 

being used in literature. 

 

They all mean the same thing. Here, for example, if you want to indicate the spacing, 

and if you are following this nomenclature, each of these intervals would be indicated 

as Δx instead of h. There is nothing wrong in continuing with the h nomenclature, but 

just to keep things more flexible, we are using this different nomenclature here. 

(Refer Slide Time: 10:33) 

 



Let us look at the Taylor table that we have as a consequence. We are just trying to 

recall what we did last time. We would write down the Taylor series. What you can 

see is that we have written up to the fifth derivative. Let us go ahead and do that so 

that you can actually see the correspondence with the Taylor table here. We have the 

Taylor series for fi+1. You could write it for fi+2. 

 

This should be 4. So these are the Taylor series expansions for fi+1 and fi+2. Similarly, 

you can write it for fi–1 and then finally fi–2. We have all the Taylor series for the grid 

points that we have written in the stencil. Now we are going to use all these equations 

that we wrote down. Let us number them 1, 2, 3, 4.  
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And what you need to do is you need to multiply 1 with a1. 

 

And then you have to multiply the equation 2 by a2, the equation 3 by a3 and equation 

4 by a4 in order to generate the rows in the Taylor table. And then these coefficients 

would have to be worked out based on the factorial expressions that you have and also 

for the fi+2 and fi–2 you have numerals in the numerator also because you have term 2 

sitting inside the brackets raised to different powers. 

 

So once you do those little calculations, you should be able to fill up the Taylor table 

in the manner we have shown here. Now we have purposely boxed the Taylor table in 

a manner that the larger part of the Taylor table box shows information which should 

be adequate for you to solve for the 4 unknown coefficients that you have. So we have 

4 unknowns; a1, a2, a3, a4 which need to be solved. 

 



And for doing that, you learned last time that we essentially identify these columns. 

And we try to sum up the contributions of all these columns. And those are the terms 

which come in the bracketed terms on the right hand side of the final expression. And 

then we use those bracketed terms to set them individually equal to 0, so that we are 

able to finally find out the values of these four unknown coefficients by solving 4 

simultaneous algebraic equations. 

 

So that was the procedure we followed last time. So let us try to look at that 

calculation once more in detail for this problem. It is little laborious, but we will do it 

nevertheless so that we can actually get a feel of the calculations which are involved. 

So the equations that we will have coming from those 4 columns of information, let us 

try to write them down one after the other. 

(Refer Slide Time: 17:06) 

 

So if you look at the if   column, from there you will get an equation which looks like 

this. What it says essentially is that when you sum these coefficients the unknown 

coefficients, they should always go to 0. This is very easy to observe for central 

difference schemes. If you go back to your CD2 scheme for example, you will see 

that happening very simply. 

 

And in the new scheme that we are trying to work out which hopefully will give us 

the CD4 scheme, even there you will see that the sum of these coefficients will come 

out to be 0 in the final formula also because you already have this constraint imposed 



through one of the equations. So that is essentially coming from the if   column. Now 

if you look at the if   column, the equation that emerges from there looks like this. 

 

This should be single dash, I am sorry. This should be a single dash. Let us write it 

down once more to avoid confusion and I made a mistake. This should have been 

from the fi column not the if   column. Please take note of this. So the first equation 

comes from the fi column.  

 

1 2 3 4 0a a a a     

 

The second equation comes from the if   column.  

 

 1 2 3 42 2 1 0x a a a a       

 

The third equation comes from the if  column. 

 

1 2 3 44 4 0a a a a     

 

And that looks like, so let us multiply this equation by 2 so that we can get rid of the 

fractions. So this becomes like this. Let us box the expressions. This is 1. This is the 

second one. This is the third one. And then we are looking for a fourth one so that we 

have 4 simultaneous equations to solve. So the fourth one, which comes from the if   

triple dash column looks like. 

 

1 2 3 48 8 0a a a a     

 

Again, just to get rid of fractions, we would prefer to multiply it by 6, this should be 

equal to zero. So let us multiply this whole equation by 6 so that we can get rid of the 

fractions. And then you will see that the equation looks like this. So we now have 4 

equations, which need to be solved simultaneously. 
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Now if you do a few simple calculations, you can generate equations in such a manner 

that you can gradually start eliminating the unknowns and therefore get closer to 

solving the system. Ideally when you will be doing this for larger stencils there could 

be larger number of equations to handle and it could be quite tedious to do it 

manually. 

 

So in such situations it may be a better practice to involve some softwares which can 

do symbolic calculations for example MATLAB to ease the amount of effort required 

for generating these equations and solving them. So this equation you can obtain once 

you do the above calculation. Then if you do another calculation, you subtract 

equation 1 from equation 3. Then, so it finally gives you a2 is equal to –a4. 

 

So you have generated one equation here involving a2, a3 and a4. You have generated 

another condition that a2 is equal to –a4. And then if you do this calculation, you 

subtract equation 1 from 4. Then you generate another equation. So essentially what 

we have done now is we have got rid of one of the variables that is a1 in these three 

equations. 

 

So now we have three simultaneous equations in 3 variables a2, a3 and a4. So if we 

name them, let us name them as say 5, 6 and 7. 

 



   2 3 42 3 1... 5x a a a      

 

 2 4 ... 6a a   

 

 2 3 47 2 9 0... 7a a a    
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Now you substitute 6 in 5. Let us name this as 8. If you substitute 6 in 7, you have 9. 

And now you notice that you have reduced the problem to a two variable problem. So 

one more variable that is a2 has gone out from the system. And now if you combine 9 

and 8, you should be able to come up with a solution that a4 is equal to – 1/(12Δx). 

 

That means Δx is in the denominator. So 1/(12Δx) with a minus sign. And you 

remember that a2 is equal to –a4. So a2 is 1/(12Δx). And let us try to work out a3 and 

a1. 

(Refer Slide Time: 26:55) 



 

So a3 can be obtained by substituting the value of a4 in equation 9. Then you will find 

that a3 will come out to be 8/(12Δx) which is 2/(3Δx) and a1 which can be obtained by 

substituting all these values a2, a3 and a4 in equation 1. Then you will find that a1 will 

come out to be -8/(12Δx), which is – 2/(3Δx) in the denominator. Now you have 

solved for all the 4 unknown coefficients. 

 

What do you have finally for the expression of the derivative? If you just substitute 

those values of the coefficients you will find that the scheme comes out to be like this. 

However, that does not answer that what is the order of accuracy that we have 

achieved here. 

(Refer Slide Time: 28:34) 

 



For doing that, we go back and try to see where we left our previous calculations in 

the Taylor table and try to figure out what these additional columns behind the larger 

box can do that for us so that we can actually work out the order of accuracy of the 

scheme confidently. We will take note of these two columns, and we will do some 

more calculations to come to the answer that what is the formal accuracy of this 

scheme. 

(Refer Slide Time: 29:08) 

 

We have it all over here in the slide. You have already set these terms to 0. And you 

are still tentative whether you have got a fourth order accuracy or not. 

(Refer Slide Time: 29:36) 

 

In order to answer that question you have to do some calculation out here. You take 

note of the 4 coefficients that you have solved for and you substitute it into the first 



column, which is actually the iv
if  column and then you sum up all these terms in this 

column which is essentially the fifth column that we are looking at. Incidentally, 

when you substitute for all these terms, a1, a2, a3, a4 here, this comes out to be 0. 

 

That means automatically that bracketed term goes to 0 even though you have not 

explicitly set it to zero. What that means is that the leading error in the truncation 

error terms is not this, but rather the contributions which comes from the next column, 

which is the v
if  column. And that column incidentally gives you a nonzero 

summation. 

 

When you substitute the values of a1, a2, a3, a4 into those respective expressions, this 

would give you a nonzero summation. And remember that you have 1/(30Δx) in the 

denominator and you have (Δx)5 terms in the denominator in each one of those terms 

in the v
if  column. So that is what is going to actually give you the (Δx)4 terms, which 

means we have actually reached fourth order accuracy, like what we had set out to 

achieve. With this, we close this lecture. Thank you. 

 


