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Lecture - 12 

Taylor Table Approach for Constructing Finite Difference Schemes 
 

In this lecture, we are going to talk about the Taylor table approach for constructing 

finite difference schemes. 

(Refer Slide Time: 00:37) 

 

Let us try to understand what we intend to discuss here to begin the discussion. So we 

are aiming to find a general technique to construct finite difference schemes. Now 

what is the necessity for such a general technique? We need to understand the 

relevance of that to begin with. Before we do all that, we first try to recall some of the 

things we did when we discussed finite difference method in some previous lectures. 

 

You can see two formulae on the slide, one for the first derivative of a function f (x) 

and the other for the second derivative. And these formula as you may recall, were 

derived from Taylor series.  

 

 

 

 

 



 

 

 

 

 

So we expanded the function f (x) about the point x and we evolved these expressions 

for the derivatives. Of course, they are approximations, they are finite difference 

approximations of the first and second derivative. 

 

And incidentally, both of them are second order accurate finite difference schemes 

representing the first and second derivatives that comes out from the order of these 

terms, which you have in the truncation error. You may recall that these terms are the 

leading error terms. If you look a little deeper into these equations, you find that these 

finite difference formula are dependent on functional values at different points. 

 

So these are different points x + h, x, x - h and you are essentially invoking the 

functional values. That means the value of f at those different points, they are 

essentially the grid points. So if you have x here and x + h here, x - h here and so on 

we assign grid numbering to all these points in a finite difference grid. And therefore, 

whether in physical space or grid space, they are different points at which the 

functional values are being invoked. 

 

So we use functional values at different points. And we also look at the order of 

accuracy of the discretization. So these are the two important things that we look at. 

Now depending on what points we have chosen, we come up with the so called 

stencil. That means, if I have these 3 grid points i, i + 1 and i - 1 then I have a stencil 

which includes these three points. It is a 3 points stencil. 

 

But just specifying 3 points is not enough, because 3 points could comprise of other 

possibilities also. You may have i, i – 1 and i – 2, which also is 3 points. But then it is 

not centered around i. So you may have centered stencils and non-centered stencils or 

skewed stencils. Also when we discussed about finite difference last time, we talked 

about backward and forward differences. 
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So we said that if you are looking at lower (smaller) indices, then you are talking 

about backward differencing. If you are looking at forward (larger) indices, you are 

talking about forward differencing. That means, you may have a forward difference 

expression looking like this, where you take a difference in functional values between 

these two points. Whereas, a backward difference expression may actually involve 

something like this, a difference in functional values between points i and i - 1. 

(Refer Slide Time: 05:25) 

 

Now using Taylor series to generate a finite difference scheme with desired accuracy 

and in a given stencil, which could be central or biased like what we discussed, 

sometimes could be quite tedious especially if you have a large stencil. That means, if 

you have large number of points. Let us say you have a 5 point stencil then you will 

see that to manipulate the Taylor series in a way that you can finally come to an 

expression for the derivative becomes increasingly more complex. 

 

However, higher stencil sizes are usually associated with higher accuracy. And 

therefore, when you look for higher accuracy in approximating the derivatives very 

often you have to use them. Therefore, you need to have a more convenient and 

generalized framework where irrespective of stencil size and irrespective of the order 

of derivative that you want to calculate or approximate you should have a very robust 

and convenient scheme to work it out. 

 

Now we are actually proposing such a general technique to construct finite difference 

formula on given stencils. And that is what we try to do when we talk about the 



Taylor table. Now before we actually form the Taylor table, we essentially write 

down the discrete form or rather the semi discrete form if you call it that way of the 

derivative in this form where you are actually talking about a first derivative 

approximation. 

 

So this term is the first derivative at the point i and what you have over here is the 

summation of terms where the functional values have been invoked from its 

neighbors. How do you create the numbers? As you can see the index here, it gives 

you i + k, where k varies from m to n, which means you can take neighbors. You can 

account for neighbors in the functional values. 

 

Because these numbers m to n will define your neighbors. And then there are 

coefficients associated with the functional values at those neighbors. And then you 

sum them up which is visible through the sigma and then you equate it to very small 

terms which should actually approximate to 0. What are the ones you will see on the 

right hand side? They are essentially going to be some truncation terms. 

 

And the leading term in that series would of course, give you the order of accuracy of 

the scheme. So you need to understand that all possible approximations of the first 

derivative can actually be expressed in a generalized form of this kind. Now the 

question to ask is that how wide is my stencil here? So that will be answered by those 

numbers m and n. 

 

The second question to ask is that given that stencil, on that stencil what would be the 

highest order of accuracy that I can achieve? When we talk about order of accuracy in 

the Taylor series sense, we often use a word formal accuracy. So we are interested in 

maximizing the formal order of accuracy of the approximation for the given stencil. 

That is essentially our target. 

(Refer Slide Time: 09:27) 



 

Let us take an example problem where we have a stencil comprising of 3 points i, i + 

1 and i + 2. It goes without saying that you are using constant interval between the 

grid points. That means it is a uniform grid. Obviously, this is not a centered stencil. It 

is a skewed stencil. And the stencil has been given to us. There is no choice, we have 

to actually evolve an expression for f dash, that means the first derivative on this 

given stencil, but we have to ensure that we come up with the highest possible 

accuracy in the approximation.  

 

Now how do we go about it? For doing that, we of course have to do a few things in 

terms of the Taylor series expansions. So let us try doing that. We can write down the 

statement of the problem in this manner. 

(Refer Slide Time: 10:38) 

 



That we want to evaluate the problem in this manner.  

 

(?)22110 Ofafafaf iiii    

 

That means, we are going to evaluate the first order derivative based on the functional 

values available at i, i + 1 and i + 2. And we do not know exactly what these 

weightages are, we have to work them out. And at this point we cannot answer what 

order of accuracy we will be able to achieve. But the aim is to maximize it. 

 

As we do that, we need to write down the Taylor series expansions. So fi+1 for 

example would be written as this; fi+2 remember that you have a 2h interval separating 

the point i and i + 2.  
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And therefore the interval comes up as 2h here. 2h gets squared here. 2h gets cubed 

here and so on. So this is the way you have Taylor series expansions for fi+1 and fi+2. 

Now coming to how we form the Taylor table. 

(Refer Slide Time: 12:32) 



 

Let us see, how we draw the table. Remember that the table will contain no different 

information other than what the Taylor series have generated for you. Only thing is 

we will lay this information in such a manner that it conveniently suits our objective. 

So let us see what are the things we put in the table. We put the function and its 

different derivatives in increasing order in the first row, leaving this corner blank. 

 

Here, we put the different terms that we saw on the left hand side of the discrete 

equations. Sorry, there should be no dash here. It is just the functional value. So let us 

erase that off to prevent any confusion. So we have a0 f i. And then you have a1 fi + 1. 

And you have a2 fi + 2.  Let us see how we fill these boxes. This is a1 h3/6. So let us try 

to understand what we did. 

 

For that it would be a good idea to write down the expression for a1 fi + 1 for example. 

So we will quickly write down the Taylor series once again over here. Now a little 

quicker because we can then map the terms coming from this Taylor series in the 

table. So let us go row by row. if   has an entry equal to 1 in the column of if   here. 

And it has 0 entries in other columns. 

 

a0 fi has an entry in the column of fi and it has 0 entries in the others. Which means 

that in the expression whatever terms are coming are essentially coming from these 

numbers multiplied with the column titles, alright. So if   comes from a if   here 



multiplied by 1 here. a0 fi comes from a0 here multiplied by fi here and so on. So that 

should give you a clue as to how these entries have come. 

 

Because now you actually can see that the first term here maps with this one because 

this term has to be essentially multiplied with the column head to give you this term. 

Similarly, this term a1 h has to be multiplied with a if   and that is the second term in 

the Taylor series and so on. So likewise you can compare this term and this term 

which figure here and here respectively. 

 

That means, all the terms that you have through a1 fi + 1 are actually coming in these 

four boxes provided that you multiply them with the column heads. Let us try to again 

repeat it for the last row here. So for that, we recall that a2 fi + 2 will be, this is triple 

dash and so on. Now you can easily map this a2 is here, and that needs to be 

multiplied with fi. This a2 into 2h is here. 

 

This term is here and the last one is here. So we could map all of them. Now we will 

actually sum up the respective columns. This is the first column, this is the second 

column, third and fourth. If we sum all the columns, we would essentially have 

accounted for all the terms that we had generated through the Taylor series 

expansions. 

(Refer Slide Time: 18:41) 

 



So if we put it that way, we can now see that through this Taylor table that we have 

formed if we sum up all these entries in the four columns, we can actually write down 

an equation which looks like this. 
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So these are the summation of the columns essentially. How do you do? See that, just 

go back to the Taylor table, it is here. And you can see that all these terms have been 

summed a0 + a1 into a1 + a2 and multiplied with the column head here, that is fi and 

then summed up with all the entries in this column multiplied by a if  , which gives 

you this. This should be a single derivative. 

 

Then comes the terms in the third column, which figure over here multiplied by if  , 

which figures at the column head. And then the last column here, which gives you 

these terms multiplied by and you could have more and more of them. So more terms 

from the Taylor series to include the higher order derivatives could be put in here. But 

that would mean that there will be more number of unknown constants to solve. 
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And you need to check whether you can have enough number of equations to do that. 

Now the point is that you would like as many terms as possible on the right hand side 

of this equation to go to 0. What is the motivation behind it? The motivation behind it 

is that if you watch carefully, then the first bracket term contains h terms with zeroeth 

order because you do not have any h terms at all over there. 

(Refer Slide Time: 20:47) 

 

The second set of terms are h to the power of 1 terms. The third bracket terms are h 

squared terms. Fourth bracket ones are h cube terms and so on. So this is the kind of 

thing you saw in the Taylor series truncation error term. So you were looking at 

leading error term and you were trying to figure out what is the order of accuracy of 

the scheme. That is how we did last time. 

 

This time the aim would be to have as many of those bracketed terms set to 0 as 

possible so that we can maximize the order of accuracy of the scheme. Now how 

many of them can we actually set to 0? That will be answered by the question that 

how many unknowns do we have on the left hand side of the equation. So we have 

three unknowns, three unknown coefficients; a0, a1 and a2. 

 

So we can have precisely three set of bracketed terms set to 0 on the right hand side of 

the equation, which would hopefully yield three independent linear algebraic 

equations, which can then be simultaneously solved to obtain the values of a0, a1 and 

a2, which will set all three bracketed terms to 0 and also give you the highest possible 



order of accuracy for this stencil. So let us go ahead and do that problem of setting 

these bracketed terms to zero. 

(Refer Slide Time: 22:30) 

 

If you look at the equations carefully, they are going to yield these three conditions, 

alright? So we have essentially set the first three bracketed terms to 0 by doing that. 

And they have yielded three linear algebraic equations in the three unknowns a0, a1 

and a2. If you solve them simultaneously these will be the values for a0, a1 and a2. 
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And therefore, you will now have a finite difference formula for the first order 

derivative for the given stencil of points i, i + 1 and i +2, ensuring that you have 

achieved the highest formal order of accuracy in the process. That equation happens 

to be this.  
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So interestingly, because it is a skewed stencil, you can see that these coefficients do 

not have symmetry. So you have a - 3 here, you have a - 1 here and 4 at the center. 

 

If it was a centered stencil, you would have seen symmetry in these coefficients. We 

will do more of these exercises later. So this was the first example we solved using 



the Taylor table approach. In the subsequent lectures, we will solve more of such 

problems. And we will try to understand how the Taylor table approach may be 

extended to higher order derivatives and both to centered as well as non-centered 

stencils. Thank you. 


