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Interception in non-coplanar orbit (Contd.,) 

  

Welcome to lecture 96, we have discussed about the non-coplanar orbit manoeuvre. So in that 

context last time we saw that one orbit is the polar one another one is the equatorial orbit and 

satellite in equatorial orbit it has to go and meets satellite in the polar orbit at certain position. 

So in that context we worked out the complete problem but towards the end because of their 

lack of time, I could not discuss some of the points.  

 

So let us look into those points will wind up and then will do the same type of another problem 

so that the things get concluded.  
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If you look into this particular problem what we have discussed last time so there was a satellite 

at A and it has to go and catch up the satellite at B. And the orbit in which it has to go so that 

orbit is like this, it is non-coplanar manoeuvre. So you are going from equatorial plane which 

is xz plan, xz is the equatorial plane and xy is the polar plane. So that satellite has to be sent 

from point A to point B and the corresponding trajectory shown in green.  

 

This is a transfer trajectory. So last time what we have looked into that the flight path angle 

turns out to be - 15° . So this -15° here it is located you can look from this place. This is the 



perigee point in the equatorial elliptic orbit and at this point the impulse ΔV is given to ΔV is 

provided here in this place. So the initial velocity was along this direction. We will you some 

other colour.  

 

Initial velocity along direction this is V i and this is your final velocity. Vi – Vf this gives you 

ΔV and this ΔV can we need to break along the three axis X, Y and Z to get how much impulse 

is required along all the three axes. So as you can see from this figure because this ϕ is negative. 

So this ϕ goes inside. This is going inside. This is negative ϕ because this is the centre of force 

and this angle then becomes 90° in this plane. 

𝑉𝑖⃗⃗ =  𝑉𝑓
⃗⃗  ⃗ − Δ𝑉⃗  

 

So, therefore you can see that from or either the angle between this and this; this is not within 

this plane. As we draw more lines and it gets complicated. I will use another colour. The angle 

between this and this dotted line dotted brown line and this blue line. It is a 90°. You can see 

that with respect to the radius vector the ϕ angle here it will turn out to be negative. So, this ϕ 

angle this is negative shown here in this place.  

 

On the other hand, if the same angle it comes outside that means instead of going inside if it is 

somewhere here in this place, it is going like this V direction is here in this place so then this 

ϕ this gets a positive value so this ϕ is then positive. While this ϕ which I have shown here in 

brown. So this ϕ is negative. So I am encircling here this ϕ is negative. So this way you have 

to visualise it. 

 

Where the things are going? How velocity vector is located with respect to the initial velocity 

vector and also with respect to the X, Y and Z reference frame. So that you can get the three 

components along the X, Y and Z reference frame. And thereafter things we have calculated 

that how much impulse will be required along all the three axes. Today we do one more same 

type of problem. 

 

So the only difference here it lies in the figure. It is a little high it is a hypothetical problem. So 

here in this problem let us consider that XYZ. This is the reference frame we are having and 

mass of the earth we will assume to be concentrated or just at the centre of the earth and so that 



its surface is not there. And why I am telling like this because I am taking orbit which we called 

the bridging orbit means if this is the surface of the earth.  

 

So on this, itself if there is a satellite moving in free space not on the touching with this. And 

you know that the corresponding velocity in the circular orbit will be given by μ by r under 

root. So here r we have to replace by r e which is the radius of the earth. And the whole assumed 

to be concentrated on the centre. So this we call as grazing orbit show let us that this is the X 

direction, Y direction and this is the Z direction.  

𝑉 = √
𝜇

𝑟𝑒
  

 

And the problems which state like this. From the previous problem we have little bit of 

difference here that this radius is 3r and the other radius is just r it is lying here. So your point 

A is now at located at a distance r from the centre. And then the satellite has to go and catch 

up. Initially this satellite is here and this will go to the B′ or let us say B′ or C′ whatever it is.  

 

And this angle is given to 30°. Your satellite has to go and catch up. The satellite is in electrical 

orbit it as to go and catch up this here in this place. So, again the same kind of figure here but 

only thing is that your distances are different. So here this angle let us this is latitude l equal to 

30° this is given. Previous problem I am just recalls the previous problem. And radius of the 

earth we are taken to be 6378 kilometres. 

 

And μ earth we will take it as 398600 kilometres cubic per second square. We can start working 

with this. First let us; what we have done last time in the last two lectures. We are going to 

follow the same step.  
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So, going from time from B to B′ or the same thing last time we have written as BC. This time 

will be the time period in the orbit. This orbit is circular orbit so how much time it will take to 

go from this place to this place. So, t BC′ or BC let us make it t only to be consistent with the 

last time. So, tBC so the time period in the polar orbit and this as to be divided by the 

corresponding 2Π and multiplied by corresponding the angle to which the satellite is going 

from B to C. 

 

So that this is θ divided by Π so this is θ divided by 180° this will get converted into θis given 

in 30° this we have to convert into Radian so this will be Π by 6 Radians what we will do that 

is multiplied by Π by 180°. This gets converted into the time taken to go from B to C. So in the 

polar orbit this is 2Π 3r whole cube which is the radius of the polar orbit divided by μ.  

𝑡𝐵𝐶 = 
𝑇𝑃𝑜𝑙𝑎𝑟

2π
× 𝜃

𝜋

180°
= 2𝜋√

(3𝑅)3

𝜇
×

1

2𝜋
× 30

𝜋

180°
  

 

And then this 1 by 2Π and then θis Π by180°. So θwill replace why 30 °  this, this cancels out 

and we get here Π by 6 times 3r cube. So inserting the corresponding values we know this 

quantity r is simply re equal to 63780 kilometres. So if we insert those values and this is μ earth 

so inserting these values 0 to 08 seconds. The time required to move from point B to C in the 

circular orbit.  

𝑡𝐵𝐶 =
𝜋

6
 √

(3𝑅)3

𝜇𝑒
=

3.1415927

6
√

(3×6378)3

398600
  

𝑡𝐵𝐶 =   2195.0208 𝑠  



 

Now, we need to determine the transfer orbit in which orbit we want to send it? And the time 

taken to go from point A to point C, so this is to A to C, tAC this must be equal to tBC. So if this 

happens then the Rendezvous will take place. For calculating this, the next step we have to 

calculate the eccentricity of the transfer orbit and this we have done rC – rA divided by rA cos 

θA. 

𝑒𝑡 =
𝑟𝐶−𝑟𝐴

𝑟𝐴 𝐶𝑜𝑠 𝜃𝐴−𝑟𝐶𝐶𝑜𝑠(𝜃𝐴+90°)
  

This Π is not the; we may use some other notation here maybe not to confuse with the flight 

path angle which we are quite often using it. We will write it as θ0. So here θ0 this is the location 

of all the true anomaly of the point A with respect to perigee of the transfer orbit and assuming 

θ0 this is important because based on this only et can be calculated and this we have to assume.  

 

So if you draw figure on a reduced scale the things will be clear to you in which orbit what 

should be the θ0. We have looked that this value was perhaps 340° we assumed in the 

beginning. But this time it will turn out to be different. So then inserting all the values here rC 

is 3R – RA is R here R cos θA. Here 1 connection is required this θ0 we are writing as the true 

anomaly of the point A. 

 

Rather we have written as θA this is what. θA is the location of the true anomaly of the point A 

with respect to the perigee of the transfer orbit. So this we write as θA and the path here which 

appears this is nothing but the location let us say that perigee is lying here of the transfer orbit 

this is the perigee of the transfer orbit. From this perigee this location then this becomes θA. 

 

That is the location of A and what will be the location of C this will be θC. So θC can be written 

as θA + 90° here in this case. This is not θ0 the notation I have been using but rather they should 

be 90°. So, this part is basically your θC. Same definition location of the point C with respect 

to the perigee of the transfer orbit. So this cos θA - R3 this is 3R cos 90 + θA. 

𝑒𝑡 =
3𝑅−𝑅

𝑅 𝐶𝑜𝑠𝜃𝐴−3𝑅 𝐶𝑜𝑠 (90+𝜃𝐴)
  

𝑒𝑡 =
2

𝐶𝑜𝑠𝜃𝐴+3 𝑆𝑖𝑛𝜃𝐴
  

And this will get reduced to R and R will cancel out so 3 - 1 this becomes 2 and here cos θA - 

3 and Cos θ. So this will become + sin θA. So this is your et and now depending on the assumed 

value of θA you will get the value for the et. 
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So letting θA to be 5°; so this gives you e t equal to 2 to divide cos 5 ° + 3 sin 5 ° + so this is 

the value for the et. Actually, for solving this problem I programmed and just using the 

programs and I found a the suitable but the initial value I guessed depending on the figure. You 

can draw the figure and you can try to guess where the perigee of the transfer orbit will lie.  

𝜃𝐴 = 5°  

𝑒𝑡 =
2

𝐶𝑜𝑠 5°+3𝑆𝑖𝑛 5°
= 1.59025  

 

This is just a guess. And there after I have done everything using the program written in Fortran. 

So now compute rA vA
2 divided by 𝜇𝑒. So from here your rA is known μ what is known. So the 

velocity at the point A in the transfer orbit will be known to you, et is 1.590259 cos θ is 5° and 

this result is 2.5916345. Once we have got this value for the semi major axis of the transfer 

orbit can be calculated which is r divided by 2 – rA vA divided by; 

(𝑟𝐴𝑉𝐴
2)

𝜇𝑒
=

1+𝑒𝑡𝐶𝑜𝑠𝜃𝐴+𝑒𝑡
2

1+𝑒𝑡𝐶𝑜𝑠𝜃𝐴
=

1+2×1.59025 𝐶𝑜𝑠 5°+(1.59025)2 

1+1.59025 𝐶𝑜𝑠 5°
  

(𝑟𝐴𝑉𝐴
2)

𝜇𝑒
= 2.5916345  

 

So rA is the point where we have the distance R from the centre of the earth 2 - this quantity 

2.5916345 and this quantity is nothing but 6378 kilometres. So, once we insert these values. 

So et turns out to be 10780.30449 kilometre. So this is the semi major axis of the transfer orbit. 

Also, from here the vA
2 this becomes 2.5916345 μ earth divided by rA and this we get the under 

root. 



𝑉𝐴
2 = √2.5916345

𝜇𝑒

𝑟𝐴
  

 𝑎𝑡 =
𝑟𝐴

2−
𝑟𝐴𝑉𝐴

2

𝜇𝑒

=
6378

2−2.5916345
  

𝑎𝑡 = 10780.30449 𝑘𝑚 

 

So VA will be available from this point and when this is required this quantity will be required 

once we are looking for how much impulse is to be given. And in which direction this is going 

to be? It is obvious from our previous figure you can see that this impulse has to be in whichever 

orbit you want to bring it. So the final velocity at point A the velocity at point A should be in 

the Plane of the transfer. 

 

And plane of transfer here has been known from the previous problem that it is making 30°  

and here also we have in this problem also we are taking 30°. So the inclination of the transfer 

orbit to the here in this case xy plane we are aware of it. We have changed the notation here. It 

was z I have made it this point as x. This axis tag that I have changed and this does not matter 

you can choose any you can make it y or whatever you like you can do. 
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So with this information we need to now find out the transfer time. So, tAC This expression 

again what we have used last time we will be using it e t square - 1 is not tell this is e sin θA 

plus this is the location of whatever it is going here this is your θC. So this is θA + 90° the 

transfer orbit of θA + 90°  minus; so last time formula we are using it. This is for the final 



position and the quantity to be subtracted is for the initial position et a
2- 1 + sin θA cos θA - ln 

θA by 2. 

𝑡𝐴𝐶 =
2 𝑎𝑡

3
2

𝜇𝑒

1
2

 [
𝑒𝑡√𝑒𝑡

2−1 𝑆𝑖𝑛(𝜃𝐴+
𝜋

2
)

1+𝑒𝑡𝐶𝑜𝑠 (𝜃𝐴+
𝜋

2
)

] − 𝑙𝑛 (
√𝑒𝑡+1+√𝑒𝑡−1𝑡𝑎𝑛(

𝜃𝐴
2

+
𝜋

4
)

√𝑒𝑡+1−√𝑒𝑡−1𝑡𝑎𝑛(
𝜃𝐴
2

+
𝜋

4
)
)  

𝑡𝐴𝐶 = [
𝑒𝑡√𝑒𝑡

2−1 𝑆𝑖𝑛(𝜃𝐴)

1+𝑒𝑡𝐶𝑜𝑠 (𝜃𝐴)
] − 𝑙𝑛 (

√𝑒𝑡+1+√𝑒𝑡−1𝑡𝑎𝑛(
𝜃𝐴
2

)

√𝑒𝑡+1−√𝑒𝑡−1𝑡𝑎𝑛(
𝜃𝐴
2

)
)  

So we need to put the et which we have calculated on the previous page θA is 5°. So only θA 

and et, et also we have already calculated and μ earth is known to us. If we insert these values 

we will get the value for the θAC. So, θAC turns out to be 1939.72677 second. While tBC this is 

tBC calculated as 2195.0208 seconds this was tBC. So this implies tAC is not equal to tBC 

difference is large. 

𝑡𝐴𝐶 = 1939.726775  

𝑡𝐵𝐶 = 2195.02005 

𝑡𝐴𝐶 ≠ 𝑡𝐵𝐶   

 

Remember that if you have hyperbolic orbit is used in the hyperbolic orbit your velocity maybe 

something like 10 kilometres per second say as we will see later on. So if we look into the 

difference almost this is 206 second of difference in 200 second that will be a lot more 

difference. So what we need to do that tAC is small that means you are going in a faster orbit 

and tBC is large. 

 

So I have to reduce the velocity little bit so that tAC becomes 2195. So that means we have to 

go in a slower orbit. So this is time taken to go from point A to C in the transfer orbit time 

taken in the transfer orbit from A to C. 
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So in the next trial I made it θA is equal to 15°. So the corresponding value for the et then turns 

out to be because I programmed it. So it was easy for me to do this problem. And rAVA
2 this is 

for the transfer orbit remember. This turns out to be 2.1505. Semi major axis this turns out to 

be; so you can see that this eccentricity has been reduced. The reduction of the eccentricity 

earlier it was 1.5 something 1.59. 

𝜃𝐴 = 15° 

𝑒𝑡 = 1.147853 

(𝑟𝐴𝑉𝐴
2)

𝜇𝑒
= 2.1505  

Larger the eccentricity the fasters the orbit smaller the eccentricity that means you are moving 

toward the parabolic orbit so little away from the elliptical orbit. The orbit becomes slow. So 

A then turns out to be 42351.8598 kilometre and tAC 2292.4687 second. And if we compare 

this with tBC, tBC is 2195.0208 second this is tBC really here in this case tAC is greater than tBC. 

𝑎 = 42351.85 𝑘𝑚  

𝑡𝐴𝐶 = 2292.46875 s 

𝑡𝐵𝐶 = 2195.0208 𝑠     ∴ 𝑡𝐴𝐶 > 𝑡𝐵𝐶 

 

That means in the orbit in which the satellite will go; now has become slow. So we have to 

make it fast. The next step the θA present to be equal 12°. So θA is equal to 12° remember 

because I have done it through program. So it is very easy for me to do this but it to do on 

calculator it takes time. Assuming θA is equal to 12° et turns out to be 1.248530. 

 



So transfer orbit you can see that now this value has gone up. The transfer orbit so that it 

becomes faster. So earlier rAVA
2  for the transfer orbit this quantity will be 2.251583 

corresponding A turns out to be 25351.42806 kilometre. We can see the difference here in these 

two places. A small change in eccentricity that makes a large difference in the semi major axis 

once A is known so therefore tAC can be computed using the equation this equation.  

𝜃𝐴 = 12° 

𝑒𝑡 = 1.248530 

(𝑟𝐴𝑉𝐴
2)

𝜇𝑒
= 2.251583  

𝑎 = 25351.42806 𝑘𝑚  

𝑡𝐴𝐶 = 2193.00317 𝑘𝑚 

 

Only thing that you need to do is replace here θ and that place by 15° here in this case by 12°. 

So, tAC turns out to be 2193.00317 second. Now you can compare with this value. So, little bit 

short of this so that means by now you might have realised that this orbit corresponding to θ 

equal to 12° is little faster. So, we have to make it little slow. So that means θA I need to choose 

little greater than 12°.  
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So, in the next trial we choose θA is equal to 12.06°. So corresponding e t will be turnout 

21.254631 A transfer orbit 25577 and 𝑟𝐴𝑉𝐴
2 divided by μ in the transfer orbit this turns out to 

be route to reach 2.24936 and tAC the transfer time 2195.03699. So, it is very close to the tBC. 



So, this is almost close to tBC. So hence calculation process over. What we need to do now is 

just to find out the impulse. 

𝜃𝐴 = 12.06°  

𝑒𝑡 = 1.24631 

𝑎𝑡 = 25577 𝑘𝑚 

(
(𝑟𝐴𝑉𝐴

2)

𝜇𝑒
)

𝑡

= 2.24936 

𝑡𝐴𝐶 = 2195.03699 ≈ 𝑡𝐵𝐶 

 

How much impulse is required along the three axes? So we have got here tAC equal to tBC. So 

already I have drawn the figure so first of the need is to find out the impulse angle this flight 

path angle ϕ which we are writing as e sin θA recalling equation from the last lecture A cos θA 

and this is e transfer. So the flight path angle for the transfer orbit so 1.24 what we are computed 

this quantity this will go here 24631 and sin θA is this quantity 12.06 °. 

𝑡𝑎𝑛𝜙 =
𝑒𝑡𝑆𝑖𝑛 𝜃𝐴

1+𝑒𝑡𝐶𝑜𝑠𝜃𝐴
=

1.24631 𝑆𝑖𝑛 (12.06°)

1+ 1.24631 𝐶𝑜𝑠 (12.06°)
  

 

And this gets your ϕ is equal to 6.6936175° approximately this is 6.69 °. So this implies that 

the orbit now is lying along this direction. It is coming out of this plane. Here A is written and 

let us make this point as A D E and F. Because B is a point on the ground somewhere it is B 

pointed here. So this we can make it C. So it is going out of the plane A, F, C and D and it is 

on the right hand side as shown here. 

 

So this is the situation now. Your transfer orbit is going inside like this and the velocity vector; 

so here because of the perigee position location your velocity direction is coming outside and 

it will be something like this. With this we are making this angle as ϕ. This is a positive angle 

6.69 we have got it degree. This is your point C, this is the point F, this is the point A and this 

is point D.  

 

It is going outside of the plane D, E, F, A towards the right and how much that angle is making 

with this plane. So with this plane this line it is making angle. So the angle between; if I extend 

this line and this line this is 30°. Because the transfer orbit inclination is 30°. So rest of the 

calculation it becomes easy through this graph. So I have made all that is a graph for you for 

the figure. 



 

Using that figure you can work out the whole thing. So, rest of the things we do it in the next 

lecture. Thank you very much. 


