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Lecture 6 

Gravitational Central Force Motion (Contd.) 

 

Welcome to the lecture number 6. We have been discussing about the central force motion, 

especially with respect to the gravitational force or either the particle moving under the 

gravitational force. So we are going to get the equation of motion. 
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From the Newton’s second law, we are trying to get the equation of motion in the geometric form 

or either way, earlier I have told that we are trying to derive the Kepler’s equation. So one thing 

you remember, in mechanics, there is a transport theorem, which says that dA/ dt in the inertial 

frame it can be written as  

𝑑𝐴 ⃗⃗  ⃗  

𝑑𝑡
|𝑖𝑛𝑡 =

𝑑𝐴 ⃗⃗  ⃗  

𝑑𝑡
| 𝐵 + ( ω ⃗⃗⃗⃗  × 𝐴 ⃗⃗  ⃗)    

So that means, if I have a frame like this and with respect to this another frame is rotating with 

angular velocity omega and the vector A in this frame, this is fixed in the body frame. 

 

This is called the body frame; this is called the inertial frame. If it is fixed, this quantity will be the 

set to 0 and then we get  



𝑑𝐴 ⃗⃗  ⃗  

𝑑𝑡
= ( ω ⃗⃗⃗⃗  × 𝐴 ⃗⃗  ⃗) 

Using this also, you can see that here in this case, suppose we have 𝑒𝑟̂ , 𝑒𝜃̂ and let us say that this is 

𝑒𝑘̂. These are perpendicular to each other forming the right hand shear. So ω ⃗⃗  ⃗   is here in this 

direction, this is your r vector. So the r vector is rotating. So this is rotating here in this direction. 

 

So 𝜃 ̇ is along this direction. So ω ⃗⃗  ⃗ becomes 𝜃̇𝑒𝑘̂and A here in this case either it can be 𝑒𝜃 or it can 

be 𝑒𝑟. That means, what I am trying to do that says on the left hand side, if I write  
𝑑𝑒𝑟̂  

𝑑𝑡
, so rate of 

change of the 𝑒𝑟 vector. So how it will look like? So here, A we need to replace it by 𝑒𝑟. So 𝑒𝑘 

times 𝑒𝑟is nothing but 𝑒𝜃̂, from here we can see. 

 

Similarly, the other part we have been doing from the basic geometry that can also be worked out. 

So in that case we are looking for  

𝑑𝑒𝜃̂  

𝑑𝑡
= ( ω ⃗⃗⃗⃗  × 𝑒𝜃̂) 

= 𝜃̇ 𝑒𝑟̂ 

Now here, you can see that this will be opposite to the 𝑒𝑟 direction. What we have derived here, 

all these things, it can be done very easily using this method, because this is a unit vector and it is 

fixed in the body. 

 

So this does not change. That means your r is here and with respect to the r vector, this is always 

fixed. At this point, this is the 𝑒𝑟 and this is 𝑒𝜃. So in inertial frame this is rotating. This is another 

way of looking, so I will tell you that you explore it more, go to the book by engineering mechanics 

by Beer Johnston or either you can look into the book Shames even Irving Shames. This may be a 

little simpler to work with. So this already we have done. We are going to advance further. 
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So once we have got our equation that 

𝑑2 𝑟 ⃗⃗ 

𝑑𝑡2
= (𝑟̈ − 𝑟𝜃̇2)𝑒𝑟̂ +

1

𝑟

𝑑(𝑟2𝜃̇) 

𝑑𝑡
𝑒𝜃̂ 

 

Now going back to our gravitational force motion, we go back and look into the equation we have 

written, this particular equation,  

𝑑2 𝑟 ⃗⃗ 

𝑑𝑡2
+

𝜇

𝑟3
𝑟 ⃗⃗   = 0   

 

So therefore, this quantity can be written as – 
𝜇

𝑟3 using this and either other way, this  
𝜇

𝑟2 𝑒𝑟̂. So what 

we observe from this place, that 𝑟̈ − 𝑟𝜃̇2, this quantity is nothing but – 
𝜇

𝑟2 and  

𝑑(𝑟2𝜃̇) 

𝑑𝑡
 = 0 

because there is no term related to e theta on the right hand side. In the vector, we equate each term 

corresponding to the orthogonal vector. 

 

These are the 𝑒𝜃 and  𝑒𝑟 are the orthogonal vectors, so corresponding parts we have to equate on 

both sides. So corresponding to this, there is no term here. This is plus 0. So therefore, this part 

gets eliminated here. We write it like this. So this is your equation B and this implies  

𝑟2𝜃̇ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = ℎ 



Now what this constant is, just have a look of this. We have 𝑟 ⃗⃗  ×  𝑣 ⃗⃗⃗    ,  

𝑟 ⃗⃗  × (r 𝑒𝑟̂ + r 𝜃̇ 𝑒𝜃̂ )  

So this gives, this part, this part that becomes 0 

𝑟 ⃗⃗  × 𝑣 ⃗⃗⃗   =  𝑟2𝜃 ̇ 𝑒𝑟̂ × 𝑒𝜃̂ 

. So this is  𝑟 ⃗⃗  × r 𝜃̇ 𝑒𝜃̂ and this is 𝑟2𝜃 ̇ 𝑒𝑟̂ × 𝑒𝜃̂ and this is nothing but 𝑒𝑘̂. So this is your 𝑟 ⃗⃗ ×  𝑣 ⃗⃗⃗    , 

which you have written as h. So we can write this h as 

ℎ ⃗⃗⃗  = h 𝑒𝑘̂ 

because h is perpendicular to both the r and v vector. So this implies that  

𝑟2𝜃 ̇ = ℎ 

This part you should remember. This will be used frequently throughout your solving of the 

problems,  𝑟2𝜃 ̇ , this is a constant. This we are left with this equation to solve. 
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So we have here 

𝑟̈ − 𝑟𝜃̇2 =– 
𝜇

𝑟2
 

If we insert into this 𝜃̇ part from this place, which is h by r2, so everything will be in terms of then 

r. So our objective is to solve this equation, if we solve this equation, conic section. So already we 

have worked out rest other things, now we need to concentrate here on this particular part. So let 

us write. Now in this format, it is a little difficult to solve. 

 



Whatever I am going to work out, this is little long, but this is bit simple. There are other methods 

also available, using which you can solve this equation and you can get the conic section equation. 

So anytime if you forget everything, you just go by this method and you will be able to work it 

out. Let us write  

 

𝑟 =
1

𝑢
 

  

and therefore 𝑟̇, this will be equal to  

𝑟̇ =  
𝑑

𝑑𝑡
(
1

𝑢
) 

and we will write this as  

= 
𝑑

𝑑𝜃
(
1

𝑢
) 

𝑑𝜃

𝑑𝑡
 

we use this from this place 𝜃̇is here. This quantity is 𝜃̇equal to h/r2. So this is h/r2 times h, these 

are not cross product. This is just multiplication and we can remove it, h times 1/r is u. So this is 

u2.  

𝑟̇ =  −ℎ
𝑑𝑢

𝑑𝜃
 

 

Next we have to get the other quantity 

𝑟̈ =
𝑑

𝑑𝑡
(𝑟̇)  

=
𝑑

𝑑𝑡
(−ℎ

𝑑𝑢

𝑑𝜃
) 

  

Same way, we can write it  

=
𝑑

𝑑𝜃
(−ℎ

𝑑𝑢

𝑑𝜃
)
𝑑𝜃

𝑑𝑡
 

 

 is nothing but h/r2. This is 

= −ℎ
𝑑2𝑢

𝑑𝜃2
 
ℎ

𝑟2
 

 



is nothing but from this place  

=
ℎ2

𝑟2
 
𝑑2𝑢

𝑑𝜃2
  

 

Now we can try to solve this equation with this information. 
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So  

 

𝑟̈ − 𝑟𝜃̇2 =– 
𝜇

𝑟2
 

So right hand side, we can replace by μ u2 writing  

1

𝑟
=  𝑢  

and the left hand side, we have to accordingly utilize the relations from here. This is your 𝑟̈. So we 

will use this first  

−ℎ2𝑢2  
𝑑2𝑢

𝑑𝜃2
− 𝑟 (

ℎ

𝑟2
)
2

= −𝜇𝑢2 

We need 𝜃̇. So first we will convert this, then we will replace. 

 

So r times 𝜃̇is h /r2. 𝜃̇ is h /r2. We go according to this relationship 

. 𝜃̇ =
h

r2
 



So here this will be  

−ℎ2𝑢2  
𝑑2𝑢

𝑑𝜃2
−

ℎ2

𝑟3
= −𝜇𝑢2 

 

Divide throughout by u2 and this minus and minus sign gets canceled out. So h2 also we can take 

it on the right hand side divide by h2 u2. 

 

So this becomes  

𝑑2𝑢

𝑑𝜃2
+ 𝑢 =

𝜇

ℎ2
 

Now what we can see that this side is in the simple harmonic motion form and therefore, it is very 

easy to solve. So the exercise we have done of reducing, here it was in a nonlinear form, no 

conducive to integration very easily and by those substitution, it has been rendered in this format, 

which is easily integrable. Other ways are also there. So sometimes if I get time, I will introduce 

that. 

 

And moreover remember that during the course, I will be giving hard copy of all these things. If I 

am explaining it later on, because this is a mix of the course, this is both elementary and the 

advanced part will be present in this one. So some part of this the hard copies are available. So I 

will give you the printed hard copy, the typed one and the other parts may be the hand written part, 

I will supply. The solution to this, now it is very easy and we can work it out. 

 

This equation we will number as, we have not numbered any equation, so let us leave it. Now let 

us say this is A here. Solving equation A and I will put here a star, so this gives you a relation of 

the form. The part we have written this is called complimentary integral and this part we call as a 

particular integral. If you remove this and just insert this part here 𝑢 =  
𝜇

ℎ2
   so you can see that 

this part will be 0 and both sides will be satisfied. 

 

You know from the simple harmonic motion that this is the solution. So if now we write it as 

1

𝑟
 =  𝑐1 cos(𝜃 – 𝛽) +

𝜇

ℎ2
 

 and rewrite it  



(ℎ2/𝜇)

𝑟
 =  (

ℎ2

𝜇
) 𝑐1 cos(𝜃 – 𝛽) + 1 

. We go to the next page or either here I can conclude this part. This particular quantity I will write 

as l. So l/r and this quantity I will write as 

  

𝑙

𝑟
 =  𝑒 cos(𝜃 – 𝛽) + 1 
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or if I rewrite it this becomes  

𝑟  =
𝑙

1 + 𝑒 cos(𝜃 – 𝛽)
 

and if you remember the conic section equation, in the beginning of the few lectures, we have 

worked out. So this is the equation of the conic section. Suppose this is the focus and from here, r 

is always measured from the focus, remember. This angle is, usually we have written this as a true 

anomaly theta as we have indicated as the true anomaly. 

 

But here in this case, this is not being measured from this line. Suppose this is being measured 

from this line, from here. If I write this angle as 𝛽, you can see that this part will be 𝜃 – 𝛽 and let 

us indicate this as 𝜑. So r will be 

𝑟  =
𝑙

1 + 𝑒cos 𝜑
 



So here 𝜑, this is part rather than calling this as the true anomaly, phi we will call as the true 

anomaly, because 𝜃 is being measured from this difference, from this place, from here to here. 

 

This is your r vector and from here to here we are measuring theta and this is your 𝛽. So this angle 

from here to here, then this becomes 𝜃 – 𝛽. Now what I am going to do, that instead of using this 

phi, I am always going to use this particular equation e cos 𝜃 assuming that we are measuring 𝜃 

from this place. Remember, this is a very simple matter. This symbol I am just replacing with some 

other symbol. This symbol has been replaced by this symbol. 

 

You can work with this, but it is a customary to use 𝜃 throughout. So for that, I require that instead 

of expressing everywhere the angles as the 𝜃 like here, the angles we have used everywhere as 𝜃, 

all the places. So instead of that, I could have written there 𝜑. So if I write in terms of 𝜑, this will 

appear here is 𝜑 – 𝛽 and then I can write equal to 𝜃. So I can write  

𝜑 – 𝛽 = θ  

if I express everywhere the equation like  
𝑑2𝑢

𝑑𝜑2 . 

If I would have written in terms of this, h2, this equation 
𝜇

ℎ2. So this is 
𝜇

ℎ2. If I write in terms of this, 

so the angle, this will appear. So it is a customary to write the expression of the conic section as 1 

+ e cos 𝜃. It is expressed in 𝜃  where 𝜃  is called the true anomaly. True anomaly is measured from 

the perigee position. So we will come to that, what is the perigee position and other things.  

 

So here in this case, I will write this as a perigee, perigee line or periapsis and this is some reference 

line. So you can see that using this very simple format, we have been able to work out the conic 

section equation. 
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So the quantity 

ℎ2

𝜇
=  𝑙 

this is nothing but your semi-latus rectum. So if you know h; for a particular particle or maybe a 

planet and if you know 𝜇, which is a planetary gravitational constant. So immediately you can 

calculate this l. As you know,  

𝑙 =  𝑎(1 – 𝑒2) 

 Another one, already we have written here this quantity, so if we know this constant h is known, 

if 𝑐1 is also known, so e can be calculated. So we can insert the value of e here in this place. 

 

We will see over a period of time how to tackle all these problems. For the time being, it is suffices 

that we always remember that our equation of conic section is given by  

𝑟  =
𝑙

1 + 𝑒 cos𝜃 
 

where e is called the eccentricity and 𝜃  is the true anomaly and l is the semi-latus rectum, which 

is given by this expression. Now if we rewrite this part, so  

𝑙  = 𝑟 + 𝑟𝑒 cos𝜃 

and if you remember in our conic section part, once we were discussing about the ellipse. 

 



This is your r, this is 𝜃 and then we had directrix here. This was l, this was l/e and this was r/e. So 

see the same format we are getting or not. If we take this part and rewrite this as l/e, so, this 

becomes 

𝑙

𝑒
 =

𝑟

𝑒
+ 𝑟 cos𝜃 

 

Check this; this is r/e, this part and r cos 𝜃̇will be nothing but this particular part. This is r cos 𝜃̇.  

So the conic section, whatever we have described earlier, it is visible directly from this place. That 

means, the gravitational force motion can be described by this conic section equation. Also, you 

can see from this place, if I again draw this ellipse r is a vector along this direction and this is 𝜃̇. 

So  

𝑙 = 𝑟 + 𝑟 . 𝑒 ⃗⃗  

so e is a vector along this direction along the periapsis. Then only, you get re cos𝜃. So obviously, 

this is not a unit vector. 

 

This is eccentricity vector, 𝑒 ̂ is called the eccentricity vector and do not confuse it with what we 

are using as  𝑒𝑟̂ , 𝑒𝜃̂ 𝑎𝑛𝑑  𝑒𝑘̂ . Never confuse with this. These are the unit vectors and this is the 

eccentricity vector. This is not a unit vector. The eccentricity vector is directed along the periapsis 

and therefore 𝑟 . 𝑒 ⃗⃗ gives you re cos𝜃. So right now, I am stating like this, but later on we will prove 

this directly using the equation of motion under the gravitational force. 

 

So today, we conclude with this lecture. Thank you very much for listening. We will develop this 

step by step and I hope you find it useful and interesting also. Thank you very much and I will be 

supporting all these lectures with the hard copy of the material and also the hand written part, so 

you will not face any problem during the course. Thank you. 

 


