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Lecture – 38 

Restricted 3 - Body Problem (Contd.,) 

 

Welcome to lecture number 38, we have been discussing about the 3-body problem and in that 

context then we moved to the restricted 3-body problem, so we will continue with that today, we 

are going to discuss about the Lagrange points. 
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So, already we have observed that the restricted 3-body equations is governed by 

  

𝑥̈–  2𝜔 𝑦̇– 𝜔2 𝑥 = –
𝜇1

𝑟1
3

(𝑥 – 𝑥𝐵1)–
𝜇2

𝑟2
3

(𝑥 +  𝑥𝐵2 ) 

 

and similarly, along the y direction in the synodic frame, we have 

  

𝑦 +  2 𝜔𝑥̇– 𝜔2 𝑦 = –
𝜇1

𝑟1
3  𝑦 –

𝜇2

𝑟2
3  𝑦 

𝑧̈ = –
𝜇1

𝑟1
3  𝑧 –

𝜇2

𝑟2
3  𝑧 



 

 so these 3 equations we got for the restricted 3-body problem and as we have stated this cannot 

be solved explicitly and therefore, we derived a general relation. 

 

And that relations in the short form we have written as  

𝑉2 = 2f - C 

or the same thing we have also written y – c or either we have written it in terms of u – c; 2u – c, 

where u we defined as 1/2 (𝑥2 + 𝑦2) and if you remember, 𝜔2 terms also appears but 𝜔2 if you 

assume  

𝜔 =  1 

, so this term does not get involved in the u term otherwise this 𝜔2 term this remains. 

 

And therefore, from here we have ɸ equal to 

 ɸ = (𝑥2 + 𝑦2)𝜔2 +  2
𝜇1

𝑟1
 +  2

𝜇2

𝑟2
  

so this we have already worked, now the question arise is, the last time as we have been discussing 

that Lagrange points they exist and out of that we have worked for on the normaliser scale already 

we have looked into that equates the; what I mean here that if you have mass 𝑚1 and this is mass 

𝑚2, then we have looked at 𝑟1 will be equal to 𝑟2. 

 

So, this is your 𝑟1 and this is 𝑟2, so magnitude wise mass m is here, either it is a possible here in 

this place or either here in this place, so m can be here or either m can be here and in this direction, 

we have taken the each direction of the synodic frame, this is B, Barycentre and this direction 

indicates the y direction of the synodic frame, so this till this extent we have done it okay and 

thereafter also we observed that if we write this as the 𝑟12, the distance between 𝑚1 and 𝑚2, let us 

say this is A and this is C. So, AC equal to 𝑟12, so also we have observed that this will be equal to 

𝑟2 equal to 1 on the normalised scale, so we are going to look into this matter again. 
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So, the equation we have written there, the first equation; equation 1 can be rewritten as 

𝑥̈–  2𝜔 𝑦̇ =  𝜔2 𝑥 +
𝜕

𝜕𝑥
(

𝜇1

𝑟1
+

𝜇2

𝑟2
) 

y double dot can be written as, this can be written as 

𝑦̈  + 2 𝜔𝑥̇  =  𝜔2 𝑦 +  
𝜕

𝜕𝑦
(

𝜇1

𝑟1
+

𝜇2

𝑟2
) 

 

and 𝑧̈ this will can be written as in the same way,  

𝑧̈ =
𝜕

𝜕𝑧
(

𝜇1

𝑟1
–

𝜇2

𝑟2
) 

and this is our equation number (8). Now, if we look into the in equation (6) on the right hand side, 

if you look that quantity is nothing but  
𝜕𝑢

𝜕𝑥
. 

 

So, here u already we have defined, so if I differentiate it, so 1/2 times, if I take the differential of 

in equation (6) and on the right hand side we can observe using equation (4) that 𝜕u/𝜕x equal to 

1/2 times 2x, partial differential with respect to x we are taking and thereafter the rest of the 

quantity they will appear as r3x, this already we have done, so you can look back, refer to the 

earlier lectures. 

 



And of course here 𝜔2 term was there, so this is 

𝜕𝑢

𝜕𝑥
=  𝜔2 𝑥 –

𝜇1

𝑟1
3

( 𝑥 – 𝑥𝐵1) −
𝜇2

𝑟2
3 ( 𝑥 + 𝑥𝐵2) 

 so the equation (1) was rewritten as like this, equation 2 is rewritten like this and equation 3 is 

rewritten like this, so in the equation (2) on the right hand side, if we observe; okay, we have plus 

sign here in this place, so that we need to take care of. 

 

Here, if you see, actually what is happened, this is fine, so this is also okay, 𝑟1
3 actually, equation 

1 if we are writing it like this, so here already we have taken into account, if you see, if the first 

term, this term is differentiated, so this will appear as 𝜇1/𝑟1
3 with minus sign and times x and this 

quantity is nothing but what we get here in this place, x minus; here one more term we have to 

add, so we will add that particular term also, this will be 𝑟2 once we differentiate, so this is x 

(x+𝑥𝐵2) and here this we have this (x – 𝑥𝐵1) and with minus sign here. 

 

So, this way here also we do the correction, so this is (x – 𝑥𝐵1) –( x – 𝑥𝐵2), now if you look here 

on this term, this particular term and look here in this place, it should have same thing, - 𝜇1/𝑟1
3 (x 

– 𝑥𝐵1) similarly the other terms and here (x + 𝑥𝐵2), so and this term obviously we have brought it 

from the left hand side. So, what it implies that our the equation 6 is nothing but 

𝑥̈–  2 𝜔𝑦̇ =
𝜕𝑢

𝜕𝑥
 

 this is the equation (6). 

 

So, let us write this as (6A), okay, along the same line you can write 

 𝑦̈  + 2 𝜔 𝑥̇  = 𝜕𝑢/𝜕𝑦  

this is 6B as a 7, we write this as 7A because this written as 7, this is 7A and  

𝑧̈, this will be simply 

𝑧 ̈ =
𝜕𝑢

𝜕𝑧
  

going back here, if you differentiate this, so ∂u/∂z, this quantity there is no z appearing in this term, 

okay therefore, this term will be 0, only thing you get here. 

 



So, this will be equal to ∂u/∂z equal to 𝜇1/𝑟1, + 𝜇2/𝑟2, so this is what we get and we have written 

here in this place. So, the above equations, so this we write as (8A), so what we see that the 

equation (6), (7), (8) can be reduced here in this format. 
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Now, equation (6A), (7A) and (8A), if 

𝜕𝑢

𝜕𝑥
 =

𝜕𝑢

𝜕𝑦
=

𝜕𝑢

𝜕𝑧
= 0 

, so this refers to your double point in analytical geometry and when this is going to be true once 

all this quantities on the right hand side are 0, so this is satisfied by; so this will be satisfied if 

𝑥̈ = 𝑦̈  = 𝑧̈ = 0 

 means they are all 0. Generally, 

 𝑥̇ =  𝑦̇  = 𝑧̇  =  0 

So, this defines your equilibrium point, so this is satisfied, these double points are nothing but 

equilibrium point, double points are the self-intersection of a curve or surface and in this case, this 

is the equilibrium points of the 3-body, restricted 3-body system in synodic frame, this is very 

important, this is synodic frame not in inertial frame, this part is important to note, okay. So, we 

got the Jacobian integral derived already as you know and that was derived in the synodic frame, 

you can also do the same thing in the inertial frame. 

 



So, I am not giving that derivation here but you can look into the book by on Astrodynamics, it is 

a given in the list of books by Archie E. Roy, so that part I am skipping here. Now, v square equal 

to ɸ – C, if I set it to 0, so  

ɸ =  𝑐 

 or ɸ which is a function of 

ɸ (x, y, z) = C 

 this gives us equation of a surface on which velocity is 0 in the synodic frame, again this is in 

synodic frame because this v you have defined as 𝑥̇2, 𝑦̇2 + 𝑧̇2, okay. 

 

And 𝑥̇; x, y and z in our context it has been described in the synodic frame, okay and therefore, 

the velocity is 0 in the synodic frame and on this we will discuss further but toward the end of this 

topic. 
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So, now we look into the Lagrange points solution, from equation 1 or let us say equation 3, if we 

put  

𝑧 ̈ = 0 

, so in that case what do we get, on the right hand side we have this equation here, 𝑧̈ equal to 0, so 

for acceleration is 0. So, this part at the equilibrium point if you are putting at 0, so the solution to 

this will be  

𝑧 = 0 



 and this already we have discuss also. 

 

So, this implies z equal to 0 and we have written earlier, this implies that the equilibrium /Lagrange 

points/Librational points, these are also called librational points lie in the orbital plane of the 

primary and the secondary bodies. Why this is so, z equal to 0 because in this our case, z was up 

and here we have taken x and this we have taken as 𝑦𝑠 and this was the point B, 𝑚1 is located here 

and 𝑚2 is located here and this is rotating. 

 

So, we assume that we chose the synodic frame such that xs and 𝑦𝑠 lies in the plane; orbital plane 

of the masses 𝑚1 and 𝑚2 and because of that we are getting this result that z equal to 0, so that 

means all the Lagrange points will lie in the plane xs, 𝑦𝑠 plane that is in the xs, 𝑦𝑠 plane, okay 

thereafter we normalised the scale, so on the normalised scale what we observe that 𝜇1 can be 

written as; so what is mean by normalisation that we have  

𝑚1 +  𝑚2 =  1 

 

 

Total mass we assume it to be unit therefore, 𝑚1 by 𝑚1 + 𝑚2, this we will write as 1 - 𝜇∗, okay let 

us multiply this also by G times 𝑚1 + 𝑚2 and if G equal to 1, then we consider this remains 1 and 

this quantity is nothing but mu, so this is mu equal to 1, this quantity is mu, G times 𝑚1 we write 

it as 𝜇1, G times 𝑚2 we have written as this as the 𝜇2, so 𝜇2 star or 𝜇∗ we will define as; 𝜇∗ will 

be; see 𝜇∗ is the mass of 𝑚2, okay. 

 

So, this is 𝑚2 divided by 𝑚1 + 𝑚2 times G, this is in the normalised form, so 𝜇∗ is 𝑚2 times G is 

𝜇2 and below this quantity is mu, similarly 1 – 𝜇∗, this will be equal to, so this is the normalised 

form because they are having the same dimension, okay and we are dividing it and normalising it, 

so reducing it to the scale 1 and for this we have already discuss also. 
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And we know that ω equal to  

𝜔 = √
𝜇

𝑎3
 

and mu is nothing but G times 𝑚1 + 𝑚2 divided by 𝑎3, so here in this case the angular velocity of 

each masses, 𝑚1, 𝑚2 and this is a barycentre, so angular velocity this will be moving about B like 

this and this will also be moving about B like this but simultaneously and what will be the period; 

period will be the same 

as the motion of 𝑚2 about 𝑚1 or either 𝑚1 about 𝑚2, whatever the period the same period will be 

there, okay. 

 

So, according to this scheme, then your if we write this as 1 and this is the 2, so a refers to 𝑟12 the 

distance between 1 and 2 and on the normalised scale, we take this as 1, G already we are taking 

this as 1, so this 𝑚1 + 𝑚2 as 1, so this gets reduced to ω equal to; so ω also on the normalised scale 

is 1 and benefit of using this is the ease of representing the system and less time taking and better 

understanding. 

 

And it can be which once you have got the results, so you can solve, you can get back to the actual 

scale without any problem okay, so from the first equation we got here z equal to 0, so this is one 

of the conclusion. So, the Lagrange points what we are deducting that they are lying in the xy 



plane. Now, next we take equation 2, take equation 2 is related to the y axis and there what we see 

that 𝑥̈ is; y double dot we have taken to be 0. 

 

And 𝑦̇ equal to 0 at equilibrium and therefore, your equation that gets reduced to minus y 𝜔2 y 

with minus sign, okay, so here already or maybe we can write like this; - 𝜔2 y = - y, okay. On the 

right hand side what we have; so we have to write the whole equation, so this we have written as 

– 𝜇1 by y 𝑟1
3 –𝜇2 by divided by 𝑟2

3. 

 

And solving this we get 

𝜇1

𝑟1
3  +

𝜇2

𝑟2
3 =  1 

𝑦 ̇ =  0 

, so under that condition this is valid, so that means if I have 2 masses 𝑚1 and 𝑚2, so using this 

you will get the solution where the y is lying of the axis, so this also we have already done, this I 

have taken a revision because in the next I am going to do on the actual scale some of the things 

that will be pretty complicated, so we can recall in this lecture. 

 

Then, we can okay, once we have got this, then we can take the third equation, first equation, so 

from equation 1, 

𝑥̈ =  0 

𝑥 ̇ = 0 

so from there we get – 𝜔2 x equal to minus; rest of the terms I will arrange here and write in this 

place rather than again and again writing and rewriting and if we utilise this here in this place and 

we know that ω this equal to 1, so what do we get? 

 

These 2 terms will cancel out, then this and this will cancel out because this quantity equal to 1 

and ω is also equal to 1, so minus x, minus x from both sides will cancel out, so this yields  

𝜇1

𝑟1
3 𝑥𝐵1  =

𝜇2

𝑟2
3  𝑥𝐵2 

 Now, what the result we have got here in this place, let us name it, 8A, this result with write as 

(9), and this result as (10). 
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Now, insert (10) into (9); equation (10) into (9), so what do we get here, 
𝜇1

𝑟1
3   +

𝜇2

𝑟2
3 you can see this 

quantity, this will be 𝜇1/𝑟1
3 (𝑥𝐵1 divided by 𝑥𝐵2) and this is 𝜇1/𝑟1

3 𝑥𝐵1 divided by 𝑥𝐵2 and on the 

right hand side we get this is as 1, so 𝜇1/𝑟1
3, (𝑥𝐵2 + 𝑥𝐵1)divided by; and (𝑥𝐵1 + 𝑥𝐵2 )is nothing but 

your 𝑟12, this is barycentre, so this distance you have taken as 𝑥𝐵1𝑥𝐵1, this distance you have taken 

as 𝑥𝐵2. 

𝜇1

𝑟1
3   ×  

𝑟12

𝑥𝐵2
= 1 

 

In this whole distance we are writing as 𝑟12, so on the normalised scale this quantity already we 

are writing as 𝑟12, okay and based on this we have got ω equal to 1, so ω is nothing but mu by 𝑎3 

what we have written earlier equal to 

𝜔 = √
𝜇

𝑟12
3  = 1  

and as we choose this one and this quantity is 1 by our assumption, so in that case we have got ω 

equal to 1. So, from here we get 𝑟12, okay, so we will stop here and we will continue in the next 

lecture. 


