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Satellite Attitude Control using Magnetic Torquer (Contd.)

Welcome to the lecture number 67. So today we are going to discuss about the stability

of the magnetically actuated satellite system. 

(Refer Slide Time: 00:27)

So, in that context what we require that we need to apply, as I have told you that in the

system dynamics this matrix is similar that is this is of rank 2. And therefore, as a at any

instant of time, this system is not controllable this is what we have observed in the last

class.

However, if we average the control matrix gamma and write as gamma bar is the average

gamma, then the system is controllable in an average sense. So, to apply the averaging

theorem it is required that system dynamics which can be represented as x tilde equal to f

x tilde times t; where why we are writing this because your this part is time dependent

ok, therefore we are writing here as this. It is required that this be casted in a standard

this is known as non-auto system in a standard non-autonomous form.
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So, this standard non-autonomous form it looks like x tilde equal to f x tilde t epsilon.

So, why this epsilon is appearing this equation can be changed, here let us write this as f

1, so that we use f here. So, the previous equation this equation can be changed and re

casted in terms of other variables. Let us say that instead of writing here we write as z

tilde epsilon f z tilde t epsilon. So, we can cast it in a new format where the epsilon

which is a quantity lying between 0 and 1 it appears like this. 

If it happens, so in that case the dynamics becomes lower than the excitation. So, for the

averaging as I have stated you earlier, that if the dynamics is slower as compared to the

excitation what you see here that excitation is very fast and because of that the system

response is like this.

So, we can replace this trajectory by this averaged one, this is the averaged one this is

shown like this ok. And there after once we have casted here this in the non-autonomous;

a standard non autonomous form so, this can be sent changed to a standard autonomous

form which will appear like this ok. And this will be your you can write as f averaged

instead of f here this will be a f averaged and this will be in terms of z tilde ok. So, this is

you are giving the average dynamics and then you can apply the Lyapunav theorem to

this to prove stability of the averaged system.
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So, definition of the averaging theorem it states like continuous; how do we define the

average system non-linear system or the non-linear function this exist.  So, this is the

averaging of this  is the way of averaging any function.  So, this is averaging in time

domain it can be averaging in a space or whatever it depends on the type of function.

This is stands for the t here this particular interval 0 to infinity and this D is the domain

for x tilde.
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And which map delta map from 0 to infinity and is a strictly decreasing continuous and

bounded function ok. So, these are the three qualities strictly decreasing, continuous and

bounded.  Such  that  delta  T tends  to  0  as  T tends  to  infinity.  No  periodicity  of  the

dynamics  is  assumed  here  ok,  so  this  is  the  basic  definition.  Now,  consider  the

proposition you can look into the book Hassan Khalil double s or single s is there I do

not remember, but this is Hassan Khalil by on non-linear systems ok.
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In this book you will find this definition, more over this proposition which I am stating

here this is also given in Khalil.  So, these are the basic things required to prove the

system stability. So, proof is given there you may not be aware of all these things it is

quite possible that you are not going through the Lyapunav stability analysis for the non-

linear system, you might have done it for the linear system, but still has not effort I am

putting  it  here.  So,  that  this  topic  gets  completed  and  I  will  put  this  proof  as  the

supplementary material. 

Now, consider the system where f is a mapping from 0 to infinity this is about t and then

the domain D for x tilde, the epsilon 0 this is less than 1 and it maps into R n. So, the

function  f  it  maps  from these  are  for  the  three  items  which  is  appearing  here  three

variables, this is basically vector x tilde what t as a scalar epsilon is also a scalar. So, the

corresponding three domains are here.



So, from there it is a mapped to R n, so n dimensional space, n dimensional real space.

So,  f  is  continuous  and bounded up to  the  second order  with  respect  to  x tilde  and

epsilon. So, what we will do? We will change it to this one, if we are taking this f to have

continuous bounded partial derivatives up to second order with respect to x and a tilde.

So, your domain must not be closed, if it is a closed domain, so that means, if I have a

point  here.  So  I  cannot  have  neighbourhood  of  this  on  this  side  ok,  here  the

neighbourhood is there in this domain, but this side we cannot have neighbourhood. But

if the domain is open which is always shown like this, so you can take any point as close

as to the boundary, but there will be always a neighbourhood of that. So, this is important

in this respect ok.

So, the epsilon lies in this range and therefore, your system will be then differentiable

with respect to or the will have partial derivative with respect to x tilde and the epsilon,

so both this and this we make it open. Another proper way of defining this is that the

systems the domain should be open, but in the case of the t it so happens that your start

your t equal to t equal to 0.

So, always there is a starting time, so you will have the left hand side has the closed one.

So, there after in the time at any instant of time you are looking into the differenceability

of the system. So, therefore I initially inserted this large bracket here. So, otherwise if

you look from this point of view, so both of them should be the open set and it is a call

the open connected set.

So, those definition you should not go in to just look in to this part and then because

some of the things made it beyond your reach right now. Suppose that f t x tilde 0 has an

average function, f average x tilde on 0 to infinity and on D this is for t and this is for x

tilde and the Jacobian. So, each is been defined like this has the 0 average with respect to

Jacobian of this has 0 average with respect to the same with the same convergence has

function, same convergence function as f .
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So, solution will be; obviously, contained this t, so therefore, t is appearing and this is for

the averaged one. So, once you have average it, so this t will get eliminated and it will

appear in this format. So, if at the origin this value is 0, for all t epsilon element of 0 to

infinity times 0 to epsilon, 0 to epsilon 0 and the origin x tilde equal to 0 of the average

system. 

So, if the of the average system this origin is exponentially stable, then adjust a positive

constant epsilon star such that for all epsilon lying between 0 and epsilon star, the origin

of the system epsilon will be exponentially stable ok. So, if your average system what is

telling that this theorem that if your average system is this one is exponentially stable

then your axial system, this is a non autonomous system. So, what casted in this special

format a standard format, then this will be also exponentially stable means it’s a origin

will be exponentially stable.

So, that implies if this is the origin and say this is the say this is x 1, x 2. So, in the

neighbourhood of this the system will decay exponentially to the origin this is what it

implies ok, but in the neighbourhood it does not talk about it is globally exponentially

stable. So, these are the issues which we deal in the nonlinear system controls it. So,

there is no time to discuss the details of all these issues ok.

So, even if  you are not  aware of the nonlinear  control  system or it’s how to do the

Lyapunav stability analysis, but if you take it for granted that this is the theorem and it



goes like this ok. Then you will be able to understand some of the things which I am

going to upload you upload on the internet.

So, here we have once we have got this, that this is once we average the system, so this is

at least locally exponentially stable and then the theorem I will be providing you that

says that the system will be globally stable. Now, already we have proved that the system

is on an average, it is a controllable irrespective of whatever be the angular velocity of

the  satellite.  Arbitrary  high  it  can  be  anything  less  than  infinity,  so  theoretically  it

remains controllable ok.

And therefore, on an average the system will also be it can be stablized, so this using this

theorem ok. So, this is locally exponentially stable and also the system will be globally

stable which will follow in the proof that I will upload, but not globally exponentially

stable it is a only globally stable. So, anywhere you take the system, so it will remain as

stable.
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So, another proposition is the system dynamics we are describing in terms of I times

omega tilde dot equal to s omega tilde I omega tilde and so on and the kinematics we

have describes as q tilde equal to R q tilde times omega r tilde. So, this your system is

given system dynamics of the magnetically actuated satellite and the control law minus

epsilon square k p times q r tilde plus epsilon times k v times omega tilde r where t is



greater than 0 ok. So, we were talking about the let me state again we were talking about

the open domain, so this is your open domain.

So, in the x also x varies from interfaces space let us say this is the two dimensional

phase space in x 1 and x 2. So, on the outer side this is you can see that here already you

have the 0 ok and then the outer side on the boundary if you go on this side. So, let me

state like this because this is an important point I have a point here, so I will have a

neighbourhood of this; this is never closed like if I take some interval on the right hand

side let us say this goes as 9.99, 9.999, 9.9999 and so on.

So, this is never closed on the right hand side though the upper bound is there the upper

bound will be 10, but that 10 is not part of the system this domain ok. So, you will

always have wherever you go so if you take 99999999 something like this. So, still on

the right hand side you will find points and also on the left hand side there are points. So,

in the 2 d similarly wherever; however, close you go to this particular dotted line.

So, you will find a neighbourhood of this on the left hand side there will be there on this

side and this side also. So, therefore, you can ensure that the system is differentiable

towards near  the boundary. Then therefore,  this  is  kept open, this  is  the significance

otherwise your system will not be differentiable on the near the boundary.
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So, if we are given this system and the control this is the proportional differential control

law only thing this one the extra term epsilon square and epsilon there appearing. So,

using this law you can recast this system in this format x tilde equal to a epsilon and then

this can be averaged to get a form epsilon f average x tilde and which can to which the

Lyapunav a stability analysis can be applied ok. So, given this your t is greater than 0

where, so this you can remove this is not part of the statement of the theorem.
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So, where q tilde r is the vector part of the quaternion renders the origin. So, this is

basically your 0 0 0 the equilibrium condition of this origin. So, even it renders the origin

of the close loop system described by x tilde dot equal to f x tilde and so here in this case

you have average it out. So, averaging is appearing in the form of use a function of x, the

state variables and therefore, this is appearing in this format ok

So, this includes your dynamics and kinematics and u tilde this equal to minus epsilon

square k p times q bar  tilde k v times  omega tilde  r. So,  the closed loop system is

described by this u goes into the you remember that we have the term gamma u. So, this

gamma tilde u, u you are replacing by this. So, then it becomes a closed loop system.

So,  that  closed  loop  system  is  locally,  exponentially  stable  for  t  greater  than  t  0,

moreover all the trajectories of this system converged to q bar, 0. When the origin is

achieved when the body frame concert with the orbital frame means they become parallel

x 0 y 0 and z 0. And they are both at the same location I am just showing it differently



and this is x b y b and z b it becomes like this. With the orbital frame that is q tilde this

becomes equal to q bar 0 0 0 so, here q bar you can add 1 also, so this is the scalar part of

the quaternion.  That  means,  this  simply implies  that q tilde  r  this  becomes 0 0 0 or

equivalently q tilde r this will be 0 0 0 transpose. So, this is the origin of the system, so

system will converge to this.
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Now, the problem is of reducing your actual system this is governed by which is written

like this to a format say which can be shown it like this z tilde, t, epsilon. So, we have to

reduce it here into this format ok. And for that you need certain substitution, so I am not

going through all the things just I will give you the initial part and then I will upload the

material. So, a linear transformation is applied and we define m 1 tilde as q tilde m 2

tilde is equal to omega tilde divided by epsilon, m 1 r tilde equal to q r tilde business

scalar part of the quaternion.

So,  these  are  some of  the  transformation  relationship  we have  to  use  to  reduce  our

system into the required format; that means, you are given I times omega tilde dot S

omega tilde I omega tilde plus T gravity gradient  plus gamma times u tilde and this

disturbance we can ignore here, that will facilitate simplicity of the derivation.

So, now, here what is required say this is omega tilde. So, omega tilde if you write here

omega tilde is epsilon times m 2 tilde, omega tilde dot this will be epsilon times m 2 tilde

dot, m 1 tilde like the m 1 is q tilde ok. So, this implies m 1 dot will be q tilde dot and



which is nothing but R times q tilde times omega tilde r and R q tilde and omega r is

from this place here in this  place epsilon times m 2 r  tilde.  So,  this  gets  reduced to

epsilon times R q tilde times m 2 r tilde, so this is your m 1 tilde dot.

So, this way all the terms are to be worked out and if you do that, so your this equation

this will get reduced into this format, you can try it yourself this exercise at least this is

easy, 3 m 0 square instead of omega x square this become m 0 square and plus your

epsilon times gamma k p times r tilde minus k v times m 2 r tilde. So, this particular term

earlier times we have written it as gamma times u.
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So, u your; u you have defined as epsilon square k p times q r tilde minus epsilon times k

v times omega r tilde, q r tilde from this place, this is this part q r tilde equal to m 1 r

tilde. So, this is m 1 r tilde minus epsilon k v times omega r tilde is omega r tilde is

written here. So, this is omega r tilde this becomes epsilon times m 2 r tilde.

So, this is epsilon times m 2 r tilde ok. So, this becomes minus epsilon square k p m 1 r

tilde plus k v m 2 r tilde. And then you are multiplying it with gamma so, this becomes

minus epsilon square times gamma and k p m 1 r tilde plus k v times m 2 r tilde. And

then your this particular part I times omega tilde this can be written as I times epsilon

times here this is a epsilon times m 2 tilde ok. So, this is epsilon time’s m 2 tilde.



So, you can see that m 2 tilde dot, so this becomes and epsilon is taken out side. So, if we

this is on the left hand side on the right hand side you have S omega tilde and all those

terms. So, these terms need to be converted, but here I am particularly taking this term.

So, this term appears as minus other terms I am not considering here for simplicity that

will follow up in your the uploaded material m 2 r tilde.

See, if you see here this epsilon; this epsilon it will cancel and you will get this as m 2

tilde dot this equal to some other terms minus epsilon times gamma times k p m 1 r tilde

plus k v m 2 r tilde. Now, go back and look here in this place is it the same thing. So,

minus sign thing only here I have kept it here inside, here in this place I have brought it

outside.

So, it is the; so this equation, so in this format what we see that, if I take this I on the

right hand side. So, you can see that this will be of the form m 2 tilde equal to this will be

a function of m 2 tilde and other variables which are involved, so and epsilon is here

outside ok.

So, this becomes reduced; to this gets reduced to be a form where the averaging can be

applied because here in this case this is a term which is less than 1 which is small and

therefore,  the it makes it cast the system into a form where the dynamics is wearing

slowly as compared to the excitation. If we look in to the body frame; however, fast the

as; you made the body rotate as fast as possible. So, that dynamics of the body itself

getting accelerate it is a becoming very fast say its angular velocity has become very

high.

So, does the excitation becomes high because of your magnetic field is in the orbital

frame and from there you are converting into the body frame. So, that also changes in

that case. So, that components of the magnetic field in the body frame will also change.

So, here the excitation becomes also very high. So, if you speed up the body, so the

excitation will also speed up ok. So, this averaging will always be of can be applied and

therefore, this has got reduced to a standard format and there after it is just a matter of

construction of a Lyapunav function ok.
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And if we do that then the system stability can be proved and so the Lyapunav theorem

Lyapunav function can be chosen like this I am not going to derive this part I am going

to upload this material. You see e tilde b x, this is the first column of your attitude matrix

and e tilde b z this is the third column of the attitude matrix. So, basically this term is

appearing for the gravity gradient consideration m 0 this part we have written.

Forming a Lyapunav function this is the Lyapunav function I have briefly earlier about

this. Lyapunav function is a function where v 0 equal to 0 and v x tilde this will be

greater than 0. So, it is a positive definite function. However, if we and if v dot x if this is

less than 0, then we say that the system is asymptotically stable. If v dot x is less than

equal to 0, so this is asymptotically stable and this is stable in the sense of Lyapunav.

So, I am not going into this theorem I am presuming that you know all these things ok,

but if we apply LaSalle’s theorem. So, in the LaSalle’s theorem this condition that v 0

equal to 0 this is relaxed. And moreover v dot x less than equal to 0 this can also ensure

that the system is asymptotically stable, you can look into Khalil for all these things.

So, here in this case for sufficiently large k p, v will be greater than 0; it can be ensued

that v is positive definite. So, sufficiently large k p it can be ensured that v is positive

definite and so we will follow rest of the things in the material to be uploaded. You can

check that at the origin, so at the region m 2 r will be 0, so this term will vanish. At the

origin your body frame coincide with the orbital frame and therefore your attitude matrix



A q will  have it  will  be just  an identity  matrix.  So,  your e b x first  column of this

becomes 1 0 0. So, this can be reduced to a format and I is your inertia matrix. 

So, this also get reduced to 0 you can verify, the same way this also gets reduced to 0 and

at the origin because your q 4 equal to 1 and q r tilde this equal to 0 0 0 and this is

nothing but q 4 equal to m 1 4 we have defined ok. So, therefore this also becomes 0, so

that the origin it ensued that v 0 equal to 0. 

And rest everywhere this is one negative term, but it can be ensured that if you keep k p

equal to high. So, for irrespective of the state of the system this v can be made positive

definite and for this the condition can be defined accordingly which will follow up in the

materials to be uploaded. So, this way we have discussed about the system stability and it

can be shown that v dot x this is less than 0. So, using the LaSalle’s theorem, then it can

be shown that such; it can be stated that such a system is globally asymptotically stable

because there it happens that for any state it can this is satisfied.

Means anywhere you leave the system in the status space it will converge to the origin.

So, what we have discussed about the magnetic attitude control. So, basically we have

not gone into the design of the file or the magnetic torque curve because my objective is

not to teach you the how to make the torquer and other things. But basics of the magnetic

actuator, how does it work how to apply to the system and how the control is done.

So, this way it comes to an end and using the magneto coulombic system which is the

using the charge also the system can be controlled. So, some minor changes in this is

required, the equation remains same almost and then the proof of theorem remain same.

And only thing in the dynamics part in the torque part, the equation the torque equation

will differ that we need to derive.

So, if I find time I will do that otherwise we wind up here in this place today and we will

continue this then we are left with the aero dynamic torque and solar radiation torque.

So, these are basically taken as disturbance to the system ok. And if you are looking for a

particular control that just using the aerodynamic torque you want to control. So, once

your force is calculated ok, so the torque can be are calculated and using that torque, so if

gravity gradient is project response because gravity gradient will always be present until

and unless you are in the satellite is in the geostationary orbit the gravity gradient will be

always present. And we will continue in the next lecture. 



So, thank you very much for listening.


