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Lecture – 20
Rigid Body Dynamics (Contd)

Welcome to  the  lecture  number  20.  We have been discussing  about  the  Rigid  Body

Dynamics so, we will continue with that. And, due course of our analysis we saw that the

inertia  matrix  emerged  and  we need to  know some of  the  properties  inertia  matrix,

because that we will be helpful in discussing various problems.
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So, let us look into the inertia matrix the equation that we have written, this was written

as rho square I minus rho times rho tilde times rho tilde the transpose and times d m ok.

So, you know that if I am given a positive definite matrix, then this property x transpose

A. If this is a symmetric positive definite matrix, then this must hold this quantity will be

greater than 0 ok.

So, let us say that for this v I, we use this type of notation u tilde trans u tilde transpose u

tilde well write it like this. So, if you operate from this particular one, take it inside. So,

if we take it inside, this will be rho square u tilde transpose rho times rho transpose u

tilde, u is an arbitrary matrix which is not depending on m ok.



So, if we look for this quantity, this is vector u and this is vector rho tilde. So, the angle

between these 2 u tilde transpose rho, this we can write as u tilde magnitude times rho

tilde magnitude and say the angle between these 2 vectors it happens to be gamma. So,

we can write it as cos gamma ok. And therefore, this quantity here on the right hand side

it can be written as u tilde magnitude square times rho tilde magnitude time square times

cos square gamma. And, this is dm on the left hand side and this rho tilde a magnitude

this is nothing, but this rho. 

So, here we have in the left hand side u tilde transpose times I and here one more part we

are missing. So, u tilde is coming from this place. So, we need to put that also. So, we

have I matrix here identity matrix times u tilde ok. So, this also constitutes the this is t.

This is the transpose which is on here in this place. So, I times u tilde is nothing, but u

tilde then therefore, u tilde transpose times u tilde that is equal to u tilde a magnitude

square. So, these 2 are the, these 2 terms this term and this term, they are the same term

this is integration.

So, what we see here? This is rho square and if we write this as u tilde magnitude, u tilde

magnitude equal to u. So, this we can write as 1 minus cos square gamma dm and this

quantity is this is equal to rho square u square, sin square gamma d m and therefore, rho

square rho times u sin gamma square d m and this is always a positive quantity. So, this

is going to be greater than 0 until unless until unless sin gamma equal to 0 for all the

particles of that mass. And that is a very extreme case that is the limiting case which will

happen only if your u tilde vector, along the u tilde vector your all masses are linearly.

If this is your u tilde vector so, all masses are located along this direction itself then only

this vanishes. So, in that case the angle between this 2 will vanish ok; u tilde and rho u

tilde and rho tilde vector say here the we have written in terms of sin gamma. So, sin

gamma means you are putting this gamma equal to 0 means this vector and this vector

the rho vector. So,  both are  aligned and because this  vector  is  arbitrary, rho tilde  is

arbitrary your sorry this u tilde is your arbitrary vector you are taken on your own ok.

So, that means, the vector you have taken along that direction itself this rho vector is

aligned. So, rho vector is also align in this direction. And this integration is over all the

particles; that means, that all the particles are lying over this line only. Means if I have

this u tilde vector along this direction, so, all your particles are considering concentrating



over this line only ok. So, this is a very extremist distribution and only for that case this

will turn out to be equal to 0 otherwise it will never be 0 this will be always positive

definite ok. So, we if you note down the following properties of the inertia matrix we

shall be helpful due course of time.
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Inertia matrix this is the real symmetric matrix. So, basically these are the what I am

going to write  it  is  a property of the real symmetric  matrix,  and because our inertia

matrix also is real symmetric matrix. And therefore, all those properties will apply. Eigen

values of a real symmetric matrix are real, because your inertia it cannot be complex

quantity it is a physical quantity can be chosen to be real matrix; can be chosen to be.

So, the eigen vectors we can also choose them to be real.  Its  written like this  eigen

vectors as one term eigen values as one term ok. And this as a significance that if my

eigen vectors are real symmetric of a real symmetric matrix can be chosen to be real

means, the eigen vectors they indicate here in this case the directions and here for this

particular case they indicate principal x direction as we will see later on.

So,  if  more  over  every  real  symmetric  matrix;  so,  this  has  got  complete  set  of  the

orthonormal eigen vectors matrix; ortho real symmetric matrix is also diagonalizable you

can diagonalize it, and this is very important because if we can diagonalize. So, we can

get a principal moment of inertia. For every real symmetric matrix a there exists a real



orthogonal  matrix;  already we have studied about what is the orthogonal  matrix.  So,

there exists a real orthogonal matrix M such that, M transpose I will not put this bracket

where D is a diagonal matrix means if we operate on this a matrix or the inertia matrix I

matrix, I can converted it to a diagonal matrix and this is a very important.

(Refer Slide Time: 12:15)

Is called the M is called a modal matrix and if its increase if we normalize, then we get

the columns of the of the modal matrix, M are the eigen vectors of A. If it is able to

diagnolize A, then this these are the eigen vectors of A. So, in the ortho normal form let

us say that, I have this M matrix and this operates on some vector nu and this eigen value

problem with a write it like this. So, here this nu tilde this appears as the eigen vector and

if we normalize this eigen vector, normalize it means we convert it to a unit vector that is

convert to a unit vector then its components they indicate then the components this will

indicate the direction cosines.

Let us say that I omega we have written earlier ok. So obviously, I is a matrix where you

have the I 11 I 12 I 13 all these terms are there and then you have omega 1 omega 2

omega 3 and what you are looking for that instead of this ok. If it convey reduce to a

form where I  (Refer Time:  14:52)  or instead of writing this  I  will  write  in terms of

lambda if it can be written like this.



So, can we find a situation or the axis where the rotation can be represented at this is

your h vector. So, the h vector or the h tilde, can it be rotated represented it like this? So,

this simply indicates that if your h vector if you are writing as h 1 times e 1 cap h 1 times

e 2 cap h 3 times e 3 cap. Means in your body frame this is the e frame and this is e 2

direction e 2 direction e 3 direction ok. So, in this frame you are taking the components

of the h vector this is your h vector. So, take components along this direction.

So, you can write it like this. Similarly omega you can write at omega 1 e 2 cap omega 2

e 2 cap plus omega 3, e 3 cap ok. So, in general this h and omega 1 they are not parallel

we go to the next page.
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See even if we have this kind of situation I 1 I 2 I 3 and here we have omega 1 omega 2

omega 3 and this is your h which you can write at as I, 1 times omega 1 I 2 times omega

2 I 3 time omega 3. And in vector notion the same thing you can write as this the first

term h 1.

So, h 1 equal to I 1 times omega 1 times e 2 cap the second term this is your h 2 this is h

2. So, this is h 1 is h 3; omega 2 e 2 cap plus e 3 cap. While your omega vector we have

written as e 2 cap plus omega 3 e 3 cap. What we can see that these 2 vectors cannot be

parallel  because  of  the presence  of  these terms.  So,  even if  we you consider  inertia



matrix where the off diagonal terms are 0, in that case h and omega in general. So, we

can state that in general they are not parallel, in general h is not parallel to omega.

So, what can be that situation where h and omega they are parallel ok. So, if h and omega

they are parallel means you should be able to show it like this, this is your I matrix I

times omega or writing the same term same thing like; this is your omega vector I matrix

omega vector or omega matrix this is a column with matrix basically. So, instead of

telling column matrix, I will always pick this as the vector. This is much better than a

picking it has a column matrix. So, when this situation will arise that I omega will be

equal to lambda times omega. So, if this situation arises so, this simply implies that we

are looking for condition where h and omega they are parallel to each other; means if

you look here in this side. So, I 1 omega 1, I 2 omega 2.

So, we write this term as I times omega tilde minus lambda I now this is the unit matrix

lambda I  times omega tilde.  So,  if  you write  it  this  way, we can see that the this  is

lambda times lambda I tilde; lambda times this identity matrix.  So, this is indicating

basically your eigen value problem. So, rotation if the rotation happens along a particular

principal axis, only then this situation will be satisfied or as earlier we have discussed

that or let us say that this is my first axis second axis and the third axis. And, this is the

principal axis first principal axis, second principal axis and this is the third principal axis.

So, this kind of notation we can have only in the case where rotation itself is along one o

the principal axis otherwise we cannot get this ok. So, if we write it in this way let us say

that you have A x equals to lambda x, and then you are writing this as lambda and this is

the identity matrix lambda x equal to 0 and then you are solving it ok. So, the same term

this the eigen value problem, here also this is the eigen value problem. So, if you try to

solve this problem. So, in that case for the nontrivial solution, we look for the nontrivial

solution means omega tilde this is not 0 this is not a 0 vector. So, we will particularly

explore this expression.
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So,  what  we see that,  for  our  problem to  be  traceable  this  must  be  similar  ok.  For

nontrivial solution determinant of this must vanish this implies that this must be similar

only then the determinant will vanish ok. And then this lambda I tilde if you set it to 0 so,

you can solve for lambda. So, you get 3 values for lambda say this is lambda 1 lambda 2

lambda 3 and this 3 values they will indicate the 3 principal moments of inertia.

So, the 3 principal moments of inertia; it can happen that all of them like they are lambda

lambda lambda all of them are same that happens in the case of the sphere. Where, all the

moments of inertia along all the perpendicular direction all the 3 perpendicular direction

whichever you choose it happens to be the same ok.

Now, here this omega tilde which is appearing, this is your eigen vector ok. So, for each

of the eigen value you can solve for this eigen vector and then this eigen vector this

indicates the direction of the principal or the principal moment direction. So, if we have

the lambda 1 lambda 2 lambda 3; so, taking this lambda 1 we can solve this. So, one

value we will have to assume the rest other 2 we can solve for and if it is repeating. So,

you have to  apply the process  for  solving eigen vector  getting  eigen vectors  for the

repeated  eigen  values  and  you  can  look  for  that  technique  in  the  book  Krezig

Engineering Matrix Mathematics by Krezig.



So, this omega then corresponding to this lambda 1 what you get; corresponding to this

lambda 1 the omega tilde that you get this keeps you the eigen vector which locates the

first  principal  moment  of  inertia  direction  ok.  Similarly  from lambda 2 you will  get

omega tilde. So, for this omega tilde now, omega tilde as a whole if you look it may not

be a unit vector if it is not unit vector just normalize it ok. So, each component of this

omega tilde then, omega tilde the next one let us say for I will write it in the exponent

terms not to indicate these are the components of omega, but rather these are the eigen

vectors themselves ok.

So, similarly for lambda 3 omega tilde 3; so, the components of this omega tilde, they

will be cos alpha cos beta and cos gamma these are the direction cosines. And cos alpha

times cos beta square time cos gamma square as we have discussed in our rotation, cos

alpha square alpha plus cos square beta plus cos square gamma this will be equal to 1.

Once you have normalize it so, the normalized omega tilde which is eigen vector here in

this case, it will indicate the direction cosines of the principal direction.

So, let us get into these through a figure, say if I know the mass distribution with respect

to this axis e 2 e 2 e 3 where we have all I 1 I 12, I 13 I 21 I 22 I 23 and I 31 I 32 and I 33

all of them are available to us ok. Thereafter while I doing this operation this solving for

the eigen values we get to this point that is we solve for eigen values and the eigen

vectors. So, if this is my omega 1. So, omega 1 will have components, I can indicate it by

say omega alpha 1 beta 1 gamma 1. Similarly for this we can write here as alpha 2 beta 2

gamma 2. So, this eigen vectors. So, now, I have the principal direction, let us this is the

first principal direction and I will indicate this as e 1 may be prime ok. 

So, if I indicate by e 1 prime. So, the angle from here this will be your alpha 1 this angle

will be beta 1 and this angle will be gamma 1 and then the cos alpha 1 cos beta 1 and cos

gamma 1 this is your corresponding eigen vector here normalized eigen vector. So, this

normalized eigen vector it locates the orientation of the or it is just about the orientation

of your principal axis direction similarly you have the second direction, let us say it is

along this one. So, this your e 2 prime.

So, the same way the angle from here to here this will be alpha 2 from this place to this

place this will be beta 2 and from here to here this will be beta 3. And in the same way

than you can take the third direction which is e 3 prime. So, e 3 prime you take the angle



from this place to this place this will be your gamma 3 from here to here. This angle will

be your alpha alpha 3 and from this axis the angle will be I cannot show it now, this will

be beta 3.

So, this way all your principal axis direction principal moment of a inertia axis direction

they get located ok. So, if I write here I 1 I 2 and I 3 as the principal moment of inertia,

then this indicates that you are taking along this axis I 1, about this axis I 2 about this

axis and I 3 about this axis and the mass distribution with respect to this new axis, I 1 e 1

prime e 2 prime and e 3 prime; it is such that all the off diagonal terms I 12 I 21 I 31 I 13

I 23 and I 31 these are all equal to 0 they vanish.

So, the mass distribution then with respect to this axis it becomes such that those terms

are vanishing. And this is quite often done that if once say your satellite and you want to

get it some moment of inertia. So, first we will you have a big satellite ok. So, there are

different components inside. So, you will calculate the there are software available or

either you can do it yourself its component you have certain mass. So, you first choose

certain point and from that point you can calculate the moment; moment of inertia of the

each of the component.

So, this using the parallel axis theorem you can calculate the moment of inertia of which

of the components, you can build the moment of inertia for the whole system and once,

you have got the inertia for the whole system, which is looking a like this. So, in that

case there after you can reduce it to the format by considering the eigen value problem

and you can get here lambda 1 lambda 2 lambda 3 and also the principal axis direction

and once you get the principal axis direction. So, you can work with that I 1 I 2 I 3

instead of working this full matrix, because this is very easy to handle in controls rather

than handling this particular part ok.

So, this is about the of moment of inertia consideration and a lot more can be discussed,

but we have limited number of lectures only 30 lectures for this particular course, and

already we have covered a around 10 lectures that lecture. Number 20 it is half an hour.

So, total 10 hours we have covered. So, rest 20 hours we are having in hand to cover the

dynamics part.



So, I will not go in details of this moments of inertia, rather you look into the engineering

mechanics books by (Refer Time: 31:31) or either by Beer and Johnston book in both the

book itself given in great details. So, after reading this you will be able to solve certain

problems. So, in this particular course I am concentrating on the dynamics and controls

of the satellite, I will discuss more in more details the dynamics and to some extent the

controls because dynamics itself it takes a lot of time. So, we continue in the next lecture.

Thank you very much.


