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Kinematics of Fluid Motion

Next,  we  will  discuss  certain  kinematical  consideration  of  fluid  motion.  Now, we  have

already assumed that continue on hypothesis, that fluid is a continuous medium, which, of

course, as we mentioned earlier, these are quite natural. Because, in fluid dynamical analysis

we do not, we are not concerned with, what is happening in the microscopic level or in the

molecular level. Now, the first consideration in kinematics is of course, to describe the fluid

motion. For solid and rigid body which, we are quite familiar with, the obvious description is

the velocity of the body or the velocity of a particle, for a body which is usually used as the

velocity of the center of mass. The same approach can of course, be used. Here also, we can

define a material element of fluid and then, define its velocity. In that case, how do we define

the velocity for a particular fluid element? We identify the fluid element by its initial position;

that is, the position that it was occupying at certain time t 0. And then, how, what subsequent

time is  position vector  is  changing and the  rate  of  change of  that  position  vector  in  the

velocity. 
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So, this type of description if used is called Lagrangian description, eulerian description. So,

there is  the third line which is  known as  streak lines,  which is  very important  as far  as

physical observation of the flow. If you want to observe the flow, in your experiment, this of

course, you will be doing in your experimental or laboratory classes in aerodynamics and

they are called the streak lines. Can you suggest, how can you see a flow of air? Inject some

color dye, inject a dye. Now, you will inject at certain point? You will inject a certain point.

Just think that your injection facility such that your injecting at a point. Then, what you will

see? You are injecting dye at a particular point in the flow, what we will see? This dye will

spread, since, you have injected at a point, it will spread in a line. What is this line? This line

is called the streak line but, what is this line? Is it path line? See, path line is the path of a

particular trajectory. Is this streak line is a path line? Not in general, for special case, it can

be. We will tell you, what the special case. But, in general, it is not. See, in this case, you are

not looking to the single particle, that path line means you are looking to fixed particle, a

single particle as an example or single material element, containing almost infinite number of

molecules. But, no. you are looking here, all those material element which has passed through

that injection point. Is it not? you are looking to those element which has passed through that

injection point. So, this streak lines are path of the elements which has passed through a fixed

point. It is all the elements that has passed through that that point. So, streak line through a

point is the collection of all the fluid elements that has passed through that point.



That passed through the, all these lines coincide, if the flow is steady; that is streamlines, path

lines, streak lines, they become same, when the flow is steady. 

In  unsteady flow or  in  time dependent  flow, the lines  are  separate  and each set  of  lines

changes with time; that is, the path lines also changes with time, the streamlines also changes

with time and streak lines also change with time. In our fluid dynamics analysis, most often,

we  will  consider  two-dimensional  flow. Now, we  say  what  exactly  we mean  by a  two-

dimensional flow. When we say two-dimensional flow, considering your cartesian coordinate

system x y z, it does not mean that there is no z direction. No, a two-dimensional flow, we

can say that, if the flow velocity is everywhere at right angle to a certain direction, the flow

velocity  is  everywhere  at  right  angle  to  a  certain  direction,  so  that,  we  can  define  our

coordinate system such that the component in the third direction or in that direction to which

it is perpendicular is zero. That is, as an example, let us say that the velocity is everywhere

perpendicular to the z direction, everywhere perpendicular to the z direction, then we can

define the velocity field, simply by the other two components, even v and the flow field is

two-dimensional. 

In other  way, if  there is  a direction in which there is  no change in flow, then it  is  two-

dimensional. It is not that the third direction is not there or we are thinking about only a plane

surface, no. it is that, there is no change in the third direction, then its two-dimensional. And

as an example, in general in many cases, this can happen. If the third direction is infinite, not

zero but, infinite and that is what, we will mean by two-dimensional; that the third direction

exists but, it is infinite in length. So, that there is no change in that direction, even when we

go for experiment, we would like to simulate or you want to simulate this two-dimensional

two-dimensional flow and there also we can make it. So that, there is no end in the third

direction, that is the third direction is mathematically infinite, there is no end to the third

direction. We will see later on, that this we do by in an wind tunnel experiment by making the

model fixed to the walls. So, that for the flow, there is no end to the body or the model. 

Of course, there are certain other aspects showing, when you come to experiments but, that is

the  way  two-dimensional  two-dimensional  flow is  simulated  in  wind  tunnels.  When  the

model is up to the wall itself, fixed to the walls on both sides then, for the flow there is no

end in the model. Model is not ending anywhere, in the third direction. So, that is what, is we



call two-dimensional flow, when the flow is everywhere at right angle to the, to a certain

direction and the velocity field can be expressed by simply two components and it simply

means, that there is no change in the third direction. And mathematically, this means that the

flow is infinite in that third direction.

Another  simplification  in  flow is  sometime  achieved,  when  we  consider  the  flow to  be

axisymmetric; that is, the flow is everywhere symmetric about or certain axis. In terms of

cylindrical coordinates cylindrical coordinates x r theta where, the say x is the along the axis,

this simply means an axisymmetric flow is that, it is symmetric about the axis; that is, there is

no change in the azimuthal direction, there is no change in the azimuthal direction or in the

theta direction. So, at any x r plane, the flow field is same. Of course, there are, in this case,

there may be various situation, the azimuthal component of the velocity that may be zero.

That may be nonzero.  If it  is  nonzero,  of course, it  has to be fixed constant because,  an

axisymmetric flow cannot have variation in the azimuthal direction. There is no variation in

the  azimuthal  direction;  that  is  what  axisymmetric  flow  is.  So,  when  the  azimuthal

component of the velocity is nonzero, it  has to be constant. So, either it  is zero or some

nonzero constant, azimuthal velocity.
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The azimuthal velocity is known as swirl, the azimuthal component of velocity is known as

the swirl velocity. Let us now, come to the definition or how to define acceleration of fluid



element,  when you are  using  eulerian  concept;  the  acceleration  of  a  material  element  in

eulerian description.

In Lagrangian description, as we have mentioned, it is quite straightforward. You have the

velocity of the fluid element, material element, you simply differentiated with respect to time

or you differentiate twice the position vector of the element. In Eulerian description, it is little

different. First of all, let us consider a position here. It is called this position p. consider the

fluid element that is passing through this point P x 1 x 2 x 3 or if you want you can write x y

z, whatever it is. This is the position at, think about a material fluid element which is passing

through this point at a time t. A little time later, at t plus delta t, this element will move to

certain other location. Let us say to another location Q here. The material element material

element moves from P to Q in a small time interval delta t. 

Now, at point Q, let us say the velocity at point P is u, the velocity at point P is u. Of course,

it is a function of those x 1 x 2 x 3 and t but, every time, we will not write it. Here, of course,

we have to write anyway and that Q, it is a different point, the velocity is different.
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Now, what will be the velocity at Q? You can write flow velocity at Q. 

At same time at t, at time t. this is the flow velocity at Q, at time t; however, the material

element is reaching to this point is not at time t but, it reaching a t plus delta t. So, the change

in velocity of the material element, change in velocity of the material element will be how



much? This is the velocity at point Q at time t plus d t. The velocity of, at point Q, at time t

plus delta t minus the velocity of, at point x at time t. Now, this difference can of course, be

very easily found by Taylor series expansion. You are familiar with Taylor series expansion?

(Refer Slide Time: 40:43)

Let us say Taylor series expansion. You have done it for say several variables or for single

variables? Several variables, first of all, let us write it for single variable. The several variable

is just an extension Taylor series expansion; that is a function of x plus h is how much?

function of x or say x 0, if you call it, x 0 plus h, d f d x at x 0 plus h square by 2 factorial d 2

f d x 2 at x 0 plus, so on. If we take the first term on the right hand side to the left, that is

what, this velocity difference expression is. So, the difference can be obtained by writing all

these terms. 
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Now, see, this delta x I, what are they? The particle has moved, this much of distance, that

fluid element has moved that much of distance, in time delta t. At point P, the fluid element

has velocity u 1 u 2 u 3 or u v w, whatever you call. And in time delta t, it has moved the

distance from P to Q. So, P to Q distance are simply u 1 delta t u 2 delta t u 3 delta t. So, this

delta x i can be written as u i delta t where, u i is the velocity at x and t. This u i is this u i.

Then, what will be the Taylor series of expansion of this? Now, instead of writing delta x i or

delta x 1delta x 2 delta x 3, we will be writing u 1 delta t u 2 delta t u 2 u 3 delta t. See, if

delta t is a small time element, small time interval, so, from P to Q, we can say the distance is

also very small and over this distance, the velocity is approximated as uniform, what it was at

P. So, this delta x 1 delta x 2 delta x 3 are written as u 1 delta t u 2 delta t u 3 delta t. So, what

is this? In Taylor series, the first term, the derivative term, there are four variables now. There

are four variables now, delta t delta x 1 delta x 2 delta x 3.
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The first series, delta t has of course, no problem. It is simply d u i d t into delta t. for the time

variable, this is straightforward, d u i d t delta t plus, it will be again d u i d x 1 d x 2 d x 3,

not simply d u i d x i d u i because, for u equal to u 1. u 1, it will be differentiated with

respect to both x 1 x 2 x 3. Similarly, u 2 will also be differentiated with respect to x 1 x 2 x

3. So, the index of i and index of x is not same. That is different, for every index of u, index

of x will vary, if we write in as scalar form. Let us say, that this is u 1. Just think that this is u

1 then, here you will have d u 1 d x 1 plus d u 1 d x 2 plus d u 1 d x 3. And each case, they

will be multiplied by d u 1 d x 1 into delta x plus d u 1 d x 2. Should we write it for one? We

will fill in the letter, first write it for say 1 u 1 x i plus delta x i t plus delta t minus u 1 x 1 into

t will be d u 1 d t. See, this delta t, I am not writing. Why, we will come to it later. 

The second term will or let us write it into delta t plus d u 1 d x 1 into delta x 1 plus d u 1 d x

2 into delta x 2 plus d u 1 d x 3 into delta x 3. This is the first derivative term for of the Taylor

series; that first term h d f d x. This is what, is this. Since, there are four variables; we have

four first derivative terms. Plus, of course, the second derivative term. So, we are not writing.

The second derivative terms, we are not writing. Now, in this this delta x 1 delta x 2 delta x 3,

these replace them by u 1 delta t u 2 delta t and here u 3 delta 3. Sorry, u 3 delta t. We can do

that, this delta x 1 is replaced by u 1 delta t, this delta x 2 is u 2 delta t, this delta x 3 is u 3

delta t. So, all these terms have delta t. So, there delta t comes out and these becomes 
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The first term is of the order of delta t and the second term, without writing all details, we

will simply write as something multiplied delta t square and so on. Delta t, yes. Now, look to

these indices. You see this, u 1 d 1 d x 1. So, this multiplicating component, this multiplying

component has the same index with x. While this quantity u, it has a fixed index 1. But, this

is u 1 x 1 u 2 x 2 u 3 x 3. So, we have got what the general index will be.
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So now, we can come back here and complete this equation. This, instead of writing all those

terms, we can write, if you look to that u j d u i d x j, agreed. This multiplying u has the same

index as the x; meaning, it is a sum over then. And we are getting all these three terms by

writing this into delta t plus something, which is of the order of delta t square and so on. So,

this is the change in the velocity of the fluid element over a small time interval delta t. Divide

this by delta t and in the limiting case of delta t approaching zero, we get the acceleration. So,

acceleration of the fluid particle then, becomes what? This divided by delta t; you see and

then, let delta t approach zero. So, you see that these terms and these terms, all these terms

will  approach to  zero because,  when you divide by delta  t,  this  will  still  remain delta  t;

however,  there  will  be  no  delta  t  here.  Now,  we  get  that  the  limiting  case  of  delta  t

approaching zero, u i x plus delta x t plus delta t minus u i x t by delta t is simply that term, d

u i d t plus u j d u i d x j. So, this is what, is the acceleration of fluid element in Eulerian

description. 

Student: (( )). 

No, see, this delta t is a very small time interval, delta t is a very small time interval. 

But still our assumption there is (( )).

I understand, what you are saying that if you are, if there is an acceleration, how can this

delta t for a small time but, if the time, what we are ultimately interested is that delta t is

approaching zero. So, it is a time interval of that size. So, for that small time interval, we can

still assume it,  that if it  is for a finite time interval, of course, we can do it.  But, for an

infinitesimal time interval, we can still do that. So, this is what is the acceleration, this can

also be written as you see that d is a mathematical,  instead of a simple derivative as an

operator. This entire thing can be taken as an operator. And since, this is the derivative that

we have obtained while  following a particular  material,  this  derivative is  often called as

material derivative or substantial derivative. And it is customary to write it with this notation,

a capital D. So, whenever you see this capital D within the Eulerian framework, it implies

that the derivative is computed while following a particular material element.


